Skip to main content
Log in

Synthesis of waterborne polyurethane–silver nanoparticle antibacterial coating for synthetic leather

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

An antibacterial coating composed of silver nanoparticles and waterborne polyurethane was synthesized for use on synthetic leather. In this study, silver nanoparticles were prepared and used as nanofiller to impart antibacterial property. Silver nanoparticles were synthesized by using poly(vinyl pyrrolidone) as dispersant and sodium borohydride (NaBH4) as reducing agent. Silver nanoparticles were characterized by transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analysis. The optimum dispersant was selected according to the zeta potential of dispersions. Waterborne polyurethane was synthesized by using isophorone diisocyanate, 2-bis(hydroxymethyl)propionic acid, triethylamine, and polytetramethylene ether glycol. Waterborne polyurethane–silver antibacterial coating was obtained by ultrasonic dispersion, and then cast on the surface of synthetic leather. The antibacterial property and coating adhesion were investigated. The results showed silver nanoparticles homogeneously dispersed in waterborne polyurethane and adhesion reaching grade 4. Antibacterial testing showed bacterial reduction of 99.99% for Escherichia coli and 87.5% for Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lei, Y, Jingpeng, L, “The Future Application of Nano Silver Antibacterial Furniture Painting.” Furniture, 5 36–38 (2009)

    Google Scholar 

  2. Kocher, J, Eiden, S, “Medical devices with an antimicrobial polyurethane coating.” US Patent (2009)

  3. Rottmar, M, Richter, M, Mäder, X, “Investigations of a Novel Wound Dressing Concept Based on Biodegradable Polyurethane.” Sci. Technol. Adv. Mater., 16 (3) 34606–34610 (2016)

    Article  Google Scholar 

  4. Castel, N, Soonsutton, T, Deptula, P, Flaherty, A, Parsa, FD, “Polyurethane-Coated Breast Implants Revisited: A 30-year Follow-Up.” Arch. Plast. Surg., 42 (2) 186–193 (2015)

    Article  Google Scholar 

  5. Rahman, MM, Lee, I, “Properties of Waterborne Polyurethane-Fluorinated Marine Coatings: The Effect of Different Types of Diisocyanates and Tetrafluorobutanediol Chain Extender Content.” J. Appl. Polym. Sci., 131 (4) 1001–1007 (2014)

    Article  Google Scholar 

  6. Knetsch, MLW, Koole, LH, “New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles.” Polymers, 3 (4) 340–366 (2011)

    Article  Google Scholar 

  7. Chen, Y, Yan, L, Wang, R, Fan, H, Zhang, Q, “Antimicrobial Polyurethane Synthetic Leather Coating with In Situ Generated Nano-TiO2.” Fibers Polym., 11 (5) 689–694 (2010)

    Article  Google Scholar 

  8. Sheng, Y, Study on Preparation and Properties of Biomass-Based Antifungal Shoe Material. Shaanxi University of Science and Technology, Shaanxi (2015)

    Google Scholar 

  9. Han, JG, Xiang, YQ, Zhu, Y, “New Antibacterial Composites: Waterborne Polyurethane/Gold Nanocomposites Synthesized Via Self-Emulsifying Method.” J. Inorg. Organomet. Polym. Mater., 24 (2) 283–290 (2014)

    Article  Google Scholar 

  10. Pal, S, Mitra, K, Azmi, S, Ghosh, JK, Chakraborty, TK, “Towards the Synthesis of Sugar Amino Acid Containing Antimicrobial Noncytotoxic CAP Conjugates with Gold Nanoparticles and a Mechanistic Study of Cell Disruption.” Org. Biomol. Chem., 9 (13) 4806–4810 (2011)

    Article  Google Scholar 

  11. Naik, AJT, Ismail, S, Kay, C, Wilson, M, Parkin, IP, “Antimicrobial Activity of Polyurethane Embedded with Methylene Blue, Toluidene Blue and Gold Nanoparticles Against Staphylococcus aureus; Illuminated with White Light.” Mater. Chem. Phys., 129 (1) 446–450 (2011)

    Article  Google Scholar 

  12. Wu, CI, Huang, JW, Wen, YL, “Preparation of Antibacterial Waterborne Polyurethane/Silver Nanocomposite.” J. Chin. Chem. Soc., 56 (6) 1231–1235 (2009)

    Article  Google Scholar 

  13. Zhao, L, Wang, H, Huo, K, Cui, L, Zhang, W, Ni, H, Zhang, Y, Wu, Z, Chu, PK, “Antibacterial Nano-structured Titania Coating Incorporated with Silver Nanoparticles.” Biomaterials, 32 (24) 5706–5716 (2011)

    Article  Google Scholar 

  14. Yu, B, Leung, KM, Guo, Q, Lau, WM, Yang, J, “Synthesis of Ag-TiO2 Composite Nano Thin Film for Antimicrobial Application.” Nanotechnology, 22 (11) 115603–115611(9) (2011)

    Article  Google Scholar 

  15. Bajpai, SK, Bajpai, M, Sharma, L, Yallapu, MM, “Silver Nanoparticles Loaded Thermosensitive Cotton Fabric for Antibacterial Application.” J. Ind. Text., 44 (1) 58–69 (2013)

    Article  Google Scholar 

  16. Yu, H, Xu, G, Shen, X, Yan, X, Cheng, C, “Low Infrared Emissivity of Polyurethane/Cu Composite Coatings.” Appl. Surf. Sci., 255 (12) 6077–6081 (2009)

    Article  Google Scholar 

  17. Mallick, S, Sharma, S, Banerjee, M, “Iodine-Stabilized Cu Nanoparticle Chitosan Composite for Antibacterial Applications.” ACS Appl. Mater. Interfaces, 4 (3) 1313–1323 (2012)

    Article  Google Scholar 

  18. Raffi, M, Mehrwan, S, Bhatti, TM, Akhter, JI, Hameed, A, Yawar, W, Hasan, MMU, “Investigations into the Antibacterial Behavior of Copper Nanoparticles Against Escherichia coli.” Ann. Microbiol., 60 (1) 75–80 (2009)

    Article  Google Scholar 

  19. Perez-Liminana, MA, Aran-Ais, F, Orgiles-Barcelo, C, “Novel Waterborne Polyurethane Adhesives Based on Ag@SiO2 Nanocomposites.” J. Adhes., 90 (5–6) 437–456 (2014)

    Article  Google Scholar 

  20. Sawada, H, Kakehi, H, Koizumi, M, Katoh, Y, Miura, M, “Preparation and Antibacterial Activity of Novel Fluoroalkyl End-Capped Oligomers/Silica Nanocomposites-Encapsulated Low Molecular Biocides.” J. Mater. Sci., 42 (17) 7147–7153 (2007)

    Article  Google Scholar 

  21. Sadu, RB, Chen, DH, Kucknoor, AS, Guo, Z, Gomes, AJ, “Silver-Doped TiO2/Polyurethane Nanocomposites for Antibacterial Textile Coating.” Bionanoscience, 4 (2) 136–148 (2014)

    Article  Google Scholar 

  22. Soares, RR, Carone, C, Einloft, S, Ligabue, R, Monteiro, WF, “Synthesis and Characterization of Waterborne Polyurethane/ZnO Composites.” Polym. Bull., 71 (4) 829–838 (2014)

    Article  Google Scholar 

  23. Mishra, RS, Mishra, AK, Raju, KVSN, “Synthesis and Property Study of UV-Curable Hyperbranched Polyurethane Acrylate/ZnO Hybrid Coatings.” Eur. Polym. J., 45 (3) 960–966 (2009)

    Article  Google Scholar 

  24. Song, HJ, Zhang, ZZ, Men, XH, Luo, ZZ, “A Study of the Tribological Behavior of Nano-ZnO-Filled Polyurethane Composite Coatings.” Wear, 269 (1–2) 79–85 (2010)

    Article  Google Scholar 

  25. Christopher, G, Kulandainathan, MA, Harichandran, G, “Biopolymers Nanocomposite for Material Protection: Enhancement of Corrosion Protection Using Waterborne Polyurethane Nanocomposite Coatings.” Prog. Org. Coat., 99 91–102 (2016)

    Article  Google Scholar 

  26. Chi, TY, Yeh, HY, Lin, JJ, Jeng, U, Hsu, S, “Amphiphilic Silver-Delaminated Clay Nanohybrids and Their Composites with Polyurethane: Physico-Chemical and Biological Evaluations.” J. Mater. Chem. B, 1 (1) 2178–2189 (2013)

    Article  Google Scholar 

  27. Toker, RD, Kayaman-Apohan, N, Kahraman, MV, “UV-Curable Nano-silver Containing Polyurethane Based Organic–Inorganic Hybrid Coatings.” Prog. Org. Coat., 76 (9) 1243–1250 (2013)

    Article  Google Scholar 

  28. Fu, H, Wang, Y, Li, X, Chen, W, “Synthesis of Vegetable Oil-Based Waterborne Polyurethane/Silver-Halloysite Antibacterial Nanocomposites.” Compos. Sci. Technol., 126 86–93 (2016)

    Article  Google Scholar 

  29. Mtimet, I, Lecamp, L, Kebir, N, Burel, F, Jouenne, T, “Green Synthesis Process of a Polyurethane-Silver Nanocomposite Having Biocide Surfaces.” Polym. J., 44 (12) 1230–1237 (2012)

    Article  Google Scholar 

  30. Skrabalak, SE, Au, L, Li, X, Xia, Y, “Facile Synthesis of Ag Nanocubes and Au Nanocages.” Nat. Protoc., 2 (9) 2182–2190 (2007)

    Article  Google Scholar 

  31. Hsu, S-h, Tseng, H-J, Lin, Y-C, “The Biocompatibility and Antibacterial Properties of Waterborne Polyurethane-Silver Nanocomposites.” Biomaterials, 31 6796–6808 (2010)

    Article  Google Scholar 

  32. Akbarian, M, Olya, ME, Ataeefard, M, Mahdavian, M, “The Influence of Nanosilver on Thermal and Antibacterial Properties of a 2K Waterborne Polyurethane Coating.” Prog. Org. Coat., 75 (4) 344–348 (2012)

    Article  Google Scholar 

  33. Wattanodorn, Y, Jenkan, R, Atorngitjawat, P, Wirasate, S, “Antibacterial Anionic Waterborne Polyurethanes/Ag Nanocomposites with Enhanced Mechanical Properties.” Polym. Test., 40 163–169 (2014)

    Article  Google Scholar 

  34. Madkour, TM, Abdelazeem, EA, Tayel, A, Mustafa, G, Siam, R, “In Situ Polymerization of Polyurethane Silver Nanocomposite Foams with Intact Thermal Stability, Improved Mechanical Performance, and Induced Antimicrobial Properties.” J. Appl. Polym. Sci., 133 43125 (2016)

    Article  Google Scholar 

  35. Liu, H, Song, J, Shang, S, Song, Z, Wang, D, “Cellulose Nanocrystal/Silver Nanoparticle Composites as Bifunctional Nanofillers Within Waterborne Polyurethane.” ACS Appl. Mater. Interfaces, 4 (5) 2413–2419 (2012)

    Article  Google Scholar 

  36. Gooch, JW, Scotch-Tape Test. Springer, New York (2011)

    Book  Google Scholar 

  37. Kvítek, L, Panáček, A, Soukupová, J, Kolář, M, Večeřová, R, Prucek, R, Holecová, M, Zbořil, R, “Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs).” J. Phys. Chem. C, 112 (15) 5825–5834 (2008)

    Article  Google Scholar 

  38. Zhang, Z, Zhao, B, Hu, L, “PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes.” J. Solid State Chem., 121 (1) 105–110 (1996)

    Article  Google Scholar 

  39. Wang, CF, Wang, TF, Liao, CS, Kuo, SW, Lin, HC, “Using Pencil Drawing to Pattern Robust Superhydrophobic Surfaces to Control the Mobility of Water Droplets.” J. Phys. Chem. C, 115 (33) 16495–16500 (2011)

    Article  Google Scholar 

  40. Kilpi, L, Ylivaara, OME, Vaajoki, A, Malm, J, Sintonen, S, Tuominen, M, Puurunen, RL, Ronkainen, H, “Microscratch Testing Method for Systematic Evaluation of the Adhesion of Atomic Layer Deposited Thin Films on Silicon.” J. Vac. Sci. Technol. A Vac. Surf. Films, 34 (1) 01A124 (2016)

    Article  Google Scholar 

  41. Feng, QL, Hua, W, “Research Progress in Bactericidal Mechanisms of Nano-silver.” Food Sci., 31 (17) 420–424 (2010)

    Google Scholar 

  42. Shrivastava, S, Bera, T, Roy, A, Singh, G, Ramachandrarao, P, Dash, D, “Characterization of Enhanced Antibacterial Effects of Novel Silver Nanoparticles.” Nanotechnology, 18 (22) 8136 (2007)

    Article  Google Scholar 

  43. Kim, JS, Kuk, E, Yu, KN, Kim, JH, Park, SJ, Lee, HJ, Kim, SH, Park, YK, Park, YH, Hwang, CY, “Antimicrobial Effects of Silver Nanoparticles.” Nanomed. Nanotechnol. Biol. Med., 3 (1) 95–101 (2007)

    Article  Google Scholar 

  44. Amin, RM, Mohamed, MB, Ramadan, MA, Verwanger, T, Krammer, B, “Rapid and Sensitive Microplate Assay for Screening the Effect of Silver and Gold Nanoparticles on Bacteria.” Nanomedicine, 4 (6) 637–643 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, W. & Yu, D. Synthesis of waterborne polyurethane–silver nanoparticle antibacterial coating for synthetic leather. J Coat Technol Res 15, 415–423 (2018). https://doi.org/10.1007/s11998-017-9997-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-017-9997-3

Keywords

Navigation