Skip to main content
Log in

Enhancing the Antioxidant Activity of Fish Scale Collagen Hydrolysates Through Plastein Reaction

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

An important area of focus for developing antioxidant collagen hydrolysates (peptides) involves enhancing the antioxidant properties of collagen hydrolysates. In this study, fish scale collagen hydrolysate (FH) was used as the raw material for plastein reaction. Various enzymes, including papain, alcalase, flavourzyme, and the combination of alcalase and flavourzyme, were employed for this purpose. The plastein reaction significantly improved the thermal stability, chemical antioxidant activity, and capacity to scavenge cellular reactive oxygen species of FH. Notably, the plastein reaction catalyzed by alcalase exhibited the most significant improvement, increasing the hydroxyl radical scavenging rate from 72.3 to 93.4% and restoring the viability of the oxidative stress-induced HepG2 cell model from 50.8 ± 1.7 to 74.9 ± 1.7%. During the plastein reaction, condensation and hydrolysis reactions occurred simultaneously, with condensation being the dominant process. These reactions, along with physical aggregation, facilitated the formation of larger yet more concentrated collagen peptide aggregates, leading to increased exposure of hydrophobic groups. This enhanced the uptake of collagen hydrolysates by the cells and contributed to the enhancement of their antioxidant properties. Thus, the plastein reaction is an effective method for enhancing the antioxidant properties of collagen hydrolysates, with its simplicity of operation and promising application potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Abdo, A. A. A., Al-Dalali, S., Hou, Y., Aleryani, H., Shehzad, Q., Asawmahi, O., Al-Farga, A., Mohammed, B., Liu, X., & Sang, Y. (2023). Modification of marine bioactive peptides: Strategy to improve the biological activity, stability, and taste properties. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-023-03142-w

    Article  Google Scholar 

  • Ahmed, M., Verma, A. K., & Patel, R. (2020). Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review. Sustainable Chemistry and Pharmacy, 18, 100315.

    Article  Google Scholar 

  • Akharume, F. U., Aluko, R. E., & Adedeji, A. A. (2021). Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 198–224.

    Article  CAS  PubMed  Google Scholar 

  • Cai, M., Gu, R., Li, C., Ma, Y., Dong, Z., Liu, W., Jin, Z., Lu, J., & Yi, W. (2014). Pilot-scale production of soybean oligopeptides and antioxidant and antihypertensive effects in vitro and in vivo. Journal of Food Science and Technology, 51(9), 1866–1874.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Fang, F., & Wang, S. (2020). Physicochemical properties and hepatoprotective effects of glycated Snapper fish scale peptides conjugated with xylose via maillard reaction. Food and Chemical Toxicology, 137, 111115.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y. P., Liang, C. H., Wu, H. T., Pang, H. Y., Chen, C., Wang, G. H., & Chan, L. P. (2018). Antioxidant and anti-inflammatory capacities of collagen peptides from milkfish (Chanos chanos) scales. Journal of Food Science and Technology, 55(6), 2310–2317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chotphruethipong, L., Sukketsiri, W., Battino, M., & Benjakul, S. (2021). Conjugate between hydrolyzed collagen from defatted seabass skin and epigallocatechin gallate (EGCG): Characteristics, antioxidant activity and in vitro cellular bioactivity. RSC Advances, 11(4), 2175–2184.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey, P., Kadharbasha, S., Bajaj, M., Das, J., Chakraborty, T., Bhat, C., & Banerjee, P. (2021). Contribution of quasifibrillar properties of collagen hydrolysates towards lowering of interface tension in emulsion-based food leading to shelf-life enhancement. Food and Bioprocess Technology, 14(8), 1566–1586.

    Article  CAS  Google Scholar 

  • Feng, L., Wang, Y., Yang, J., Sun, Y., Li, Y., Ye, Z., Lin, H., & Yang, K. (2022). Overview of the preparation method, structure and function, and application of natural peptides and polypeptides. Biomedicine & Pharmacotherapy, 153, 113493.

    Article  CAS  Google Scholar 

  • Fu, Y., Therkildsen, M., Aluko, R. E., & Lametsch, R. (2019). Exploration of collagen recovered from animal by-products as a precursor of bioactive peptides: Successes and challenges. Critical Reviews in Food Science and Nutrition, 59(13), 2011–2027.

    Article  CAS  PubMed  Google Scholar 

  • Han, Y., Xie, J., Gao, H., Xia, Y., Chen, X., & Wang, C. (2015). Hepatoprotective effect of collagen peptides from Cod skin against liver oxidative damage in vitro and in vivo. Cell Biochemistry and Biophysics, 71(2), 1089–1095.

    Article  CAS  PubMed  Google Scholar 

  • Hong, H., Fan, H., Chalamaiah, M., & Wu, J. (2019). Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives. Food Chemistry, 301, 125222.

    Article  CAS  PubMed  Google Scholar 

  • Indriani, S., Benjakul, S., Quan, T. H., Sitanggang, A. B., Chaijan, M., Kaewthong, P., Petcharat, T., & Karnjanapratum, S. (2023). Effect of different ultrasound-assisted process modes on extraction yield and molecular characteristics of pepsin-soluble collagen from Asian bullfrog skin. Food and Bioprocess Technology, 16(12), 3019–3032.

    Article  CAS  Google Scholar 

  • Ishak, N. H., & Sarbon, N. M. (2018). A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing. Food and Bioprocess Technology, 11(1), 2–16.

    Article  CAS  Google Scholar 

  • Jiang, S., Zhao, Y., Shen, Q., Zhu, X., Dong, S., Liu, Z., Wu, H., & Zeng, M. (2018). Modification of ACE-inhibitory peptides from Acaudina molpadioidea using the plastein reaction and examination of its mechanism. Food Bioscience, 26, 1–7.

    Article  CAS  Google Scholar 

  • Ketnawa, S., & Liceaga, A. M. (2017). Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates. Food and Bioprocess Technology, 10(3), 582–591.

    Article  CAS  Google Scholar 

  • Li, C., Fu, Y., Dai, H., Wang, Q., Gao, R., & Zhang, Y. (2022a). Recent progress in preventive effect of collagen peptides on photoaging skin and action mechanism. Food Science and Human Wellness, 11(2), 218–229.

    Article  CAS  Google Scholar 

  • Li, P., Xu, F., Zhou, H., Gao, Y., Zhu, H., Nie, W., Wang, Z., Wang, Y., Deng, J., Zhou, K., & Xu, B. (2022b). Evolution of antioxidant peptides and their proteomic homology during processing of Jinhua ham. LWT, 166, 113771.

    Article  CAS  Google Scholar 

  • Li, Q., Fu, Y., Zhang, L., Otte, J., & Lametsch, R. (2020). Plastein from hydrolysates of porcine hemoglobin and meat using Alcalase and papain. Food Chemistry, 320, 126654.

    Article  CAS  PubMed  Google Scholar 

  • Liang, R., Cheng, S., Lin, S., Dong, Y., & Ju, H. (2021). Validation of steric configuration changes induced by a pulsed electric field treatment as the mechanism for the antioxidant activity enhancement of a peptide. Food and Bioprocess Technology, 14(9), 1751–1757.

    Article  CAS  Google Scholar 

  • Ling, J. K. U., Sam, J. H., Jeevanandam, J., Chan, Y. S., & Nandong, J. (2022). Thermal degradation of antioxidant compounds: Effects of parameters, thermal degradation kinetics, and formulation strategies. Food and Bioprocess Technology, 15(9), 1919–1935.

    Article  CAS  Google Scholar 

  • Liu, P., Huang, M., Song, S., Hayat, K., Zhang, X., Xia, S., & Jia, C. (2012). Sensory characteristics and antioxidant activities of Maillard reaction products from soy protein hydrolysates with different molecular weight distribution. Food and Bioprocess Technology, 5(5), 1775–1789.

    Article  CAS  Google Scholar 

  • Marangoni Júnior, L., Rodrigues, P. R., da Silva, R. G., Vieira, R. P., & Alves, R. M. V. (2021). Sustainable packaging films composed of sodium alginate and hydrolyzed collagen: Preparation and characterization. Food and Bioprocess Technology, 14(12), 2336–2346.

    Article  Google Scholar 

  • Mardani, M., Badakné, K., Farmani, J., & Aluko, R. E. (2023). Antioxidant peptides: Overview of production, properties, and applications in food systems. Comprehensive Reviews in Food Science and Food Safety, 22(1), 46–106.

    Article  PubMed  Google Scholar 

  • Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen, 2(2), 48–78.

    Article  CAS  Google Scholar 

  • Mohan, A., McClements, D. J., & Udenigwe, C. C. (2016). Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight. Food Chemistry, 213, 143–148.

    Article  CAS  PubMed  Google Scholar 

  • Mora, L., & Toldrá, F. (2023). Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Current Opinion in Food Science, 49, 100973.

    Article  CAS  Google Scholar 

  • Nasri, R., Hamdi, M., Touir, S., Li, S., Karra-Chaâbouni, M., & Nasri, M. (2021). Development of delivery system based on marine chitosan: Encapsulationand release kinetic study of antioxidant peptides from chitosan microparticle. International Journal of Biological Macromolecules, 167, 1445–1451.

    Article  CAS  PubMed  Google Scholar 

  • Ojeda-Piedra, S. A., Quintanar-Guerrero, D., Cornejo-Villegas, M. A., & Zambrano-Zaragoza, M. L. (2023). A green method for nanoencapsulation of thymol in Chitosan-Gelatin with antioxidant capacity. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-023-03240-9

    Article  Google Scholar 

  • Prandi, B., Cigognini, I. M., Faccini, A., Zurlini, C., Rodríguez, Ó., & Tedeschi, T. (2023). Comparative study of different protein extraction technologies applied on mushrooms by-products. Food and Bioprocess Technology, 16(7), 1570–1581.

    Article  CAS  Google Scholar 

  • Shams, R., Manzoor, S., Shabir, I., Dar, A. H., Dash, K. K., Srivastava, S., Pandey, V. K., Bashir, I., & Khan, S. A. (2023). Pulsed electric field-induced modification of proteins: A comprehensive review. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-023-03117-x

    Article  Google Scholar 

  • Shao, J., Wang, M., Zhang, G., Zhang, B., & Hao, Z. (2022). Preparation and characterization of sesame peptide-calcium chelate with different molecular weight. International Journal of Food Properties, 25(1), 2198–2210.

    Article  CAS  Google Scholar 

  • Song, W., Fu, J., Zeng, Q., Lu, H., Wang, J., Fang, L., Liu, X., Min, W., & Liu, C. (2023). Improving ACE inhibitory activity of hazelnut peptide modified by plastein: Physicochemical properties and action mechanism. Food Chemistry, 402, 134498.

    Article  CAS  PubMed  Google Scholar 

  • Soutelino, M. E. M., Rocha, Rd. S., de Oliveira, B. C. R., Mársico, E. T., & Silva, ACd. O. (2023). Technological aspects and health effects of hydrolyzed collagen and application in dairy products. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.10402022.12163974

    Article  PubMed  Google Scholar 

  • Sun-Waterhouse, D., Zhao, M., & Waterhouse, G. I. N. (2014). Protein modification during ingredient preparation and food processing: Approaches to improve food processability and nutrition. Food and Bioprocess Technology, 7(7), 1853–1893.

    Article  CAS  Google Scholar 

  • Sun, S., Gao, Y., Chen, J., & Liu, R. (2022). Identification and release kinetics of peptides from tilapia skin collagen during alcalase hydrolysis. Food Chemistry, 378, 132089.

    Article  CAS  PubMed  Google Scholar 

  • Tang, C., Zhou, K., Zhu, Y., Zhang, W., Xie, Y., Wang, Z., Zhou, H., Yang, T., Zhang, Q., & Xu, B. (2022). Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocolloids, 131, 107748.

    Article  CAS  Google Scholar 

  • Udenigwe, C. C., & Rajendran, S. R. C. K. (2016). Old products, new applications? Considering the multiple bioactivities of plastein in peptide-based functional food design. Current Opinion in Food Science, 8, 8–13.

    Article  Google Scholar 

  • Udenigwe, C. C., Wu, S., Drummond, K., & Gong, M. (2014). Revisiting the prospects of plastein: Thermal and simulated gastric stability in relation to the antioxidative capacity of casein plastein. Journal of Agricultural and Food Chemistry, 62(1), 130–135.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., & Li, B. (2018). Charge and hydrophobicity of casein peptides influence transepithelial transport and bioavailability. Food Chemistry, 245, 646–652.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wang, L., Zhang, Y., Zhu, Z., Zheng, F., & Gao, R. (2023). Food-derived collagen peptides: Safety, metabolism, and anti-skin-aging effects. Current Opinion in Food Science, 51, 101012.

    Article  CAS  Google Scholar 

  • Xu, S., Zhao, Y., Song, W., Zhang, C., Wang, Q., Li, R., Shen, Y., Gong, S., Li, M., & Sun, L. (2023). Improving the sustainability of processing by-products: Extraction and recent biological activities of collagen peptides. Foods, 12(10), 1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J. K., Lee, E., Hwang, I. J., Yim, D., Han, J., Lee, Y. S., & Kim, J. H. (2018). β-Lactoglobulin peptide fragments conjugated with caffeic acid displaying dual activities for tyrosinase inhibition and antioxidant effect. Bioconjugate Chemistry, 29(4), 1000–1005.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S. Y., Lee, S., Pyo, M. C., Jeon, H., Kim, Y., & Lee, K. W. (2017). Improved physicochemical properties and hepatic protection of Maillard reaction products derived from fish protein hydrolysates and ribose. Food Chemistry, 221, 1979–1988.

    Article  CAS  PubMed  Google Scholar 

  • Ye, M., An, C., Liu, H., & Zheng, L. (2022). Synergistic effects and mechanisms of ultrasound-assisted pretreatments on the release of Yak (Bos grunniens) bone collagen–derived osteogenic peptides in enzymatic hydrolysis. Food and Bioprocess Technology, 15(7), 1658–1675.

    Article  CAS  Google Scholar 

  • Yekta, M. M., Rezaei, M., Nouri, L., Azizi, M. H., Jabbari, M., Eş, I., & Khaneghah, A. M. (2020). Antimicrobial and antioxidant properties of burgers with quinoa peptide-loaded nanoliposomes. Journal of Food Safety, 40(2), e12753.

    Article  Google Scholar 

  • Zhang, C., Du, B., Song, Z., Deng, G., Shi, Y., Li, T., & Huang, Y. (2023). Antioxidant activity analysis of collagen peptide-magnesium chelate. Polymer Testing, 117, 107822.

    Article  CAS  Google Scholar 

  • Zhang, X., Wang, L., Wang, R., Luo, X., Li, Y., & Chen, Z. (2016). Protective effects of rice dreg protein hydrolysates against hydrogen peroxide-induced oxidative stress in HepG-2 cells. Food & Function, 7(3), 1429–1437.

    Article  CAS  Google Scholar 

  • Zhao, X., Fu, Y., & Yue, N. (2014). In vitro cytoprotection of modified casein hydrolysates by plastein reaction on rat hepatocyte cells. CyTA - Journal of Food, 12(1), 40–47.

    Article  CAS  Google Scholar 

  • Zhao, X., & Song, J. (2014). Evaluation of antioxidant properties in vitro of plastein-reaction-stressed soybean protein hydrolysate. International Journal of Food Properties, 17(1), 152–162.

    Article  CAS  Google Scholar 

  • Zhao, X., Zhang, X., & Liu, D. (2021). Collagen peptides and the related synthetic peptides: A review on improving skin health. Journal of Functional Foods, 86, 104680.

    Article  CAS  Google Scholar 

  • Zhao, X. H., Wu, D., & Li, T. J. (2010). Preparation and radical scavenging activity of papain-catalyzed casein plasteins. Dairy Science & Technology, 90(5), 521–535.

    Article  CAS  Google Scholar 

  • Zhou, H., Wang, C., Ye, J., Tao, R., Chen, H., & Cao, F. (2016). Effects of enzymatic hydrolysis assisted by high hydrostatic pressure processing on the hydrolysis and allergenicity of proteins from ginkgo seeds. Food and Bioprocess Technology, 9(5), 839–848.

    Article  CAS  Google Scholar 

  • Zhu, L., Luo, M., Zhang, Y., Fang, F., Li, M., An, F., Zhao, D., & Zhang, J. (2023). Free radical as a double-edged sword in disease: Deriving strategic opportunities for nanotherapeutics. Coordination Chemistry Reviews, 475, 214875.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the reviewers who participated in the review.

Funding

This research was supported by the National Natural Science Foundation of China (No. 22178277, 22378320) and the Knowledge Innovation Program of Wuhan-Basi Research (No. 2023020201010148).

Author information

Authors and Affiliations

Authors

Contributions

CX, CC, and BW wrote the main manuscript text. JK and SL prepared Figs. 2, 3, and 4. JZ, TL, and HW prepared Fig. 1, Fig. 5, and Tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Haibo Wang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Cai, C., Liu, T. et al. Enhancing the Antioxidant Activity of Fish Scale Collagen Hydrolysates Through Plastein Reaction. Food Bioprocess Technol (2024). https://doi.org/10.1007/s11947-024-03329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-024-03329-9

Keywords

Navigation