Skip to main content
Log in

Pulsed Electric Field-Induced Modification of Proteins: A Comprehensive Review

  • REVIEW
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Consumers are increasingly interested in food products with minimal processing, natural flavours, and no additional artificial preservatives. To fulfil these expanding needs, non-thermal alternative processing processes that result in products of greater quality were used that match customer expectations while adhering to food safety regulations. The current review focuses on the natural microstructure, functional aspects of proteins, and various protein microstructure modification approaches. Pulsed electric field (PEF) processing is a non-thermal technique for preserving the foods that are ongoing from laboratory and pilot plant scale to an industrial scale. PEF processing is an excellent alternative treatment for thermal treatments in protein-based foods because PEF processing affects protein-based foods less than thermal pasteurisation while achieving equivalent microbial inactivation. There remained, however, a dearth of understanding of the ways PEF impacts proteins and the quality of protein-based diets. PEF treatment alters the secondary and tertiary structures of proteins in diverse meals, as well as their techno-functional qualities. Enhancing the intensity of the electric field may improve the emulsifying properties of proteins and protein–polysaccharide complexes. As the duration of the PEF treatment is prolonged, unfolded protein molecules may interact hydrophobically and covalently, forming aggregates. The current review has investigated the potential effect of PEF on the techno-functional and microstructural characteristics of protein and protein-based food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

As this is a review work, no data was used for this study.

References

  • Abdollahi, M., Marmon, S., Chaijan, M., & Undeland, I. (2016). Tuning the pH-shift protein-isolation method for maximum haemoglobin removal from blood rich fish muscle. Food Chemistry, 212, 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Aewsiri, T., Benjakul, S., Visessanguan, W., Wierenga, P. A., & Gruppen, H. (2011). Surface activity and molecular characteristics of cuttlefish skin gelatin modified by oxidized linoleic acid. International Journal of Biological Macromolecules, 48(4), 650–660.

    Article  CAS  PubMed  Google Scholar 

  • Aewsiri, T., Benjakul, S., Visessanguan, W., Wierenga, P. A., & Gruppen, H. (2013). Emulsifying property and antioxidative activity of cuttlefish skin gelatin modified with oxidized linoleic acid and oxidized tannic acid. Food and Bioprocess Technology, 6, 870–881.

    Article  CAS  Google Scholar 

  • Ahmed, Z., Manzoor, M. F., Hussain, A., Hanif, M., & Zeng, X. A. (2021). Study the impact of ultra-sonication and pulsed electric field on the quality of wheat plantlet juice through FTIR and SERS. Ultrasonics Sonochemistry, 76, 105648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbarian, M., Khani, A., Eghbalpour, S., & Uversky, V. N. (2022). Bioactive peptides: synthesis, sources, applications, and proposed mechanisms of action. International Journal of Molecular Sciences, 23(3), 1445. https://doi.org/10.3390/ijms23031445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alahakoon, A. U., Oey, I., Silcock, P., & Bremer, P. (2017). Understanding the effect of pulsed electric fields on thermostability of connective tissue isolated from beef pectoralis muscle using a model system. Food Research International, 100, 261–267.

    Article  CAS  PubMed  Google Scholar 

  • Albertos, I., Martin-Diana, A. B., Cullen, P. J., Tiwari, B. K., Ojha, K. S., Bourke, P., & Rico, D. (2019). Shelf-life extension of herring (Clupea harengus) using in-package atmospheric plasma technology. Innovative Food Science & Emerging Technologies, 53, 85–91. https://doi.org/10.1016/j.ifset.2017.09.010

    Article  CAS  Google Scholar 

  • Alirezalu, K., Munekata, P. E., Parniakov, O., Barba, F. J., Witt, J., Toepfl, S., Wiktor, A., & Lorenzo, J. M. (2020). Pulsed electric field and mild heating for milk processing: a review on recent advances. Journal of the Science of Food & Agriculture, 100(1), 16–24.

    Article  CAS  Google Scholar 

  • Alves Filho, E. G., Rodrigues, T. H. S., Fernandes, F. A. N., de Brito, E. S., Cullen, P. J., Frias, J. M., Bourke, P., Cavalcante, R. S., Almeida, F. D. L., & Rodrigues, S. (2019). An untargeted chemometric evaluation of plasma and ozone processing effect on volatile compounds in orange juice. Innovative Food Science & Emerging Technologies, 53, 63–69. https://doi.org/10.1016/j.ifset.2017.10.001

    Article  CAS  Google Scholar 

  • Amiri, A., Sharifian, P., & Soltanizadeh, N. (2018). Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins. International Journal of Biological Macromolecules, 111, 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Andoyo, R., Dianti Lestari, V., Mardawati, E., & Nurhadi, B. (2018). Fractal dimension analysis of texture formation of whey protein-based foods. International Journal of Food Science, 2018, 1–17. https://doi.org/10.1155/2018/7673259

    Article  CAS  Google Scholar 

  • Arshad, R. N., Abdul-Malek, Z., Roobab, U., Munir, M. A., Naderipour, A., Qureshi, M. I., & Aadil, R. M. (2021). Pulsed electric field: a potential alternative towards a sustainable food processing. Trends in Food Science & Technology, 111, 43–54. Arshad, R. N., Abdul-Malek, Z., Roobab, U., Munir, M. A., Naderipour, A., Qureshi, M. I., & Aadil, R. M. (2021). Pulsed electric field: a potential alternative towards a sustainable food processing. Trends in Food Science & Technology, 111, 43–54.

    Article  CAS  Google Scholar 

  • Bai, T. G., Zhang, L., Qian, J. Y., Jiang, W., Wu, M., Rao, S. Q., Li, Q., Zhang, C., & Wu, C. (2021). Pulsed electric field pretreatment modifying digestion, texture, structure and flavor of rice. Lwt, 138, 110650.

    Article  CAS  Google Scholar 

  • Baldi, G., D’Elia, F., Soglia, F., Tappi, S., Petracci, M., & Rocculi, P. (2021). Exploring the effect of pulsed electric fields on the technological properties of chicken meat. Foods, 10(2), 241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basak, S., & Singhal, R. S. (2022). Succinylation of food proteins-a concise review. Lebensmittel-Wissenschaft und Technologie [Food science and technology], 154, 112866. https://doi.org/10.1016/j.lwt.2021.112866

    Article  CAS  Google Scholar 

  • Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Eggs. Food chemistry (pp. 546–562)

    Google Scholar 

  • Bermúdez-Aguirre, D., Dunne, C. P., & Barbosa-Cánovas, G. V. (2012). Effect of processing parameters on inactivation of Bacillus cereus spores in milk using pulsed electric fields. International Dairy Journal, 24(1), 13–21.

    Article  Google Scholar 

  • Bertolini, F. M., Morbiato, G., Facco, P., Marszałek, K., Pérez-Esteve, É., Benedito, J., Zambon, A., & Spilimbergo, S. (2020). Optimization of the supercritical CO2 pasteurization process for the preservation of high nutritional value of pomegranate juice. The Journal of Supercritical Fluids, 164, 104914. https://doi.org/10.1016/j.supflu.2020.104914

    Article  CAS  Google Scholar 

  • Bourdoux, S., Rajkovic, A., De Sutter, S., Vermeulen, A., Spilimbergo, S., Zambon, A., Hofland, G., Uyttendaele, M., & Devlieghere, F. (2018). Inactivation of Salmonella, Listeria monocytogenes and Escherichia coli O157:H7 inoculated on coriander by freeze-drying and supercritical CO 2 drying. Innovative Food Science & Emerging Technologies, 47, 180–186. https://doi.org/10.1016/j.ifset.2018.02.007

    Article  CAS  Google Scholar 

  • Buchmann, L., Bertsch, P., Böcker, L., Krähenmann, U., Fischer, P., & Mathys, A. (2019). Adsorption kinetics and foaming properties of soluble microalgae fractions at the air/water interface. Food Hydrocolloids, 97, 105182.

    Article  CAS  Google Scholar 

  • Buchner, S., Kinnear, M., Crouch, I. J., Taylor, J., & Minnaar, A. (2011). Effect of kafirin protein coating on sensory quality and shelf-life of ‘Packham’s Triumph’ pears during ripening. Journal of the Science of Food and Agriculture, 91(15), 2814–2820.

    Article  CAS  PubMed  Google Scholar 

  • Cao-Hoang, L., Chaine, A., Grégoire, L., & Waché, Y. (2010). Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese. Food Microbiology, 27(7), 940–944.

    Article  CAS  PubMed  Google Scholar 

  • Carullo, D., Pataro, G., Donsì, F., & Ferrari, G. (2020). Pulsed electric fields-assisted extraction of valuable compounds from Arthrospira platensis: effect of pulse polarity and mild heating. Frontiers in Bioengineering & Biotechnology, 8, 551272.

    Article  Google Scholar 

  • Chen, B. R., Wang, Z. M., Lin, J. W., Wen, Q. H., Xu, F. Y., Li, J., Wang, R., & Zeng, X. A. (2022a). Improving emulsification performance of waxy maize starch by esterification combined with pulsed electric field. Food Hydrocolloids, 129, 107655.

    Article  CAS  Google Scholar 

  • Chen, B. -K., Chang, C. -K., Cheng, K. -C., Hou, C. -Y., Lin, J. -A., Chen, M. -H., Santoso, S. P., Chen, C. -P., & Hsieh, C. -W. (2022b). Using the response surface methodology to establish the optimal conditions for preserving bananas (Musa acuminata) in a pulsed electric field and to decrease browning induced by storage at a low temperature. Food Packaging and Shelf Life, 31, 100804. https://doi.org/10.1016/j.fpsl.2021.100804

    Article  Google Scholar 

  • Chen, H., Guan, Y., Wang, A., & Zhong, Q. (2022c). Inactivation of Escherichia coli K12 on raw almonds using supercritical carbon dioxide and thyme oil. Food Microbiology, 103, 103955. https://doi.org/10.1016/j.fm.2021.103955

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., & Zhang, S.-B. (2023). Structural and functional properties of self-assembled peanut protein nanoparticles prepared by ultrasonic treatment: effects of ultrasound intensity and protein concentration. Food Chemistry, 413, 135626. https://doi.org/10.1016/j.foodchem.2023.135626

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Tume, R. K., Xiong, Y., Xu, X., Zhou, G., Chen, C., & Nishiumi, T. (2018). Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods. Critical Reviews in Food Science & Nutrition, 58(17), 2981–3003.

    Article  CAS  Google Scholar 

  • Chian, F. M., Kaur, L., Oey, I., Astruc, T., Hodgkinson, S., & Boland, M. (2019). Effect of pulsed electric fields (PEF) on the ultrastructure and in vitro protein digestibility of bovine Longissimus thoracis. LWT, 103, 253–259.

    Article  CAS  Google Scholar 

  • Cropotova, J., Tappi, S., Genovese, J., Rocculi, P., Laghi, L., Dalla Rosa, M., & Rustad, T. (2021). Study of the influence of pulsed electric field pre-treatment on quality parameters of sea bass during brine salting. Innovative Food Science & Emerging Technologies, 70, 102706.

    Article  CAS  Google Scholar 

  • Dacal-Gutiérrez, A., Tirado, D. F., & Calvo, L. (2022). Inactivation of Clostridium spores in honey with supercritical CO2 and in combination with essential oils. Processes, 10(11), 2232. https://doi.org/10.3390/pr10112232

    Article  CAS  Google Scholar 

  • Damodaran, V. B., & Fee, C. (2010). Protein PEGylation: an overview of chemistry and process considerations. European Pharmaceutical Review, 15(1), 18–26.

    Google Scholar 

  • Dars, A. G., Hu, K., Liu, Q., Abbas, A., Xie, B., & Sun, Z. (2019). Effect of thermo-sonication and ultra-high pressure on the quality and phenolic profile of mango juice. Foods, 8(8), 298. https://doi.org/10.3390/foods8080298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasan, B. G., & Boyaci, I. H. (2018). Effect of cold atmospheric plasma on inactivation of Escherichia coli and physicochemical properties of apple, orange, tomato juices, and sour cherry nectar. Food and Bioprocess Technology, 11(2), 334–343. https://doi.org/10.1007/s11947-017-2014-0

    Article  CAS  Google Scholar 

  • Day, L., Cakebread, J. A., & Loveday, S. M. (2022). Food proteins from animals and plants: differences in the nutritional and functional properties. Trends in Food Science & Technology, 119, 428–442. https://doi.org/10.1016/j.tifs.2021.12.020

    Article  CAS  Google Scholar 

  • de Jongh, H. H., & Broersen, K. (2012). Application potential of food protein modification. Advances in chemical engineering (p. 584)

    Google Scholar 

  • De Jongh, H. H., Taylor, S. L., & Koppelman, S. J. (2011). Controlling the aggregation propensity and thereby digestibility of allergens by Maillardation as illustrated for cod fish parvalbumin. Journal of Bioscience and Bioengineering, 111(2), 204–211.

    Article  PubMed  Google Scholar 

  • de Lourdes Meza-Jiménez, M., Pokhrel, P. R., de la Torre, R. R. R., Barbosa-Canovas, G. V., & Hernández-Sánchez, H. (2019). Effect of pulsed electric fields on the activity of food-grade papain in a continuous system. LWT, 109, 336–341.

    Article  Google Scholar 

  • Dehnad, D., Jafari, S. M., & Afrasiabi, M. (2016). Influence of drying on functional properties of food biopolymers: from traditional to novel dehydration techniques. Trends in Food Science & Technology, 57, 116–131.

    Article  CAS  Google Scholar 

  • Deller, M. C., Kong, L., & Rupp, B. (2016). Protein stability: a crystallographer’s perspective. Acta Crystallographica. Section F, Structural biology communications, 72(Pt 2), 72–95. https://doi.org/10.1107/S2053230X15024619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denoya, G. I., Polenta, G. A., Apóstolo, N. M., Cejas, E., Fina, B., Chamorro, J. C., Ferreyra, M., Prevosto, L., & Vaudagna, S. R. (2023). Effect of in-package cold plasma treatments on the quality of minimally processed apples. International Journal of Food Science & Technology, 58(5), 2465–2475. https://doi.org/10.1111/ijfs.16387

    Article  CAS  Google Scholar 

  • Díaz-Villanueva, J. F., Díaz-Molina, R., & García-González, V. (2015). Protein folding and mechanisms of proteostasis. International Journal of Molecular Sciences, 16(8), 17193–17230. https://doi.org/10.3390/ijms160817193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, M., Xu, Y., Zhang, Y., Han, M., Wang, P., Xu, X., & Zhou, G. (2020). Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: effects of pulsed electric field (PEF). Innovative Food Science & Emerging Technologies, 59, 102277.

    Article  CAS  Google Scholar 

  • Duan, X., Li, M., Shao, J., & Chen., Xu, X., Jin, Z., & Liu, X. (2018). Effect of oxidative modification on structural and foaming properties of egg white protein. Food Hydrocolloids, 75, 223–228.

    Article  CAS  Google Scholar 

  • European Food Safety Authority (EFSA), Clawin-Rädecker, I., De Block, J., Egger, L., Willis, C., Da Silva Felicio, M. T., & Messens, W. (2021). The use of alkalinephosphatase and possible alternative testing to verify pasteurisation of raw milk, colostrum, dairy and colostrum-based products. EFSA Journal, 19(4), e06576.

    Article  Google Scholar 

  • Farias, T. R. B., Alves Filho, E. G., Silva, L. M. A., De Brito, E. S., Rodrigues, S., & Fernandes, F. A. N. (2021). NMR evaluation of apple cubes and apple juice composition subjected to two cold plasma technologies. LWT, 150, 112062. https://doi.org/10.1016/j.lwt.2021.112062

    Article  CAS  Google Scholar 

  • Farnfield, M. M., Trenerry, C., Carey, K. A., & Cameron-Smith, D. (2009). Plasma amino acid response after ingestion of different whey protein fractions. International Journal of Food Sciences and Nutrition, 60(6), 476–486.

    Article  CAS  PubMed  Google Scholar 

  • Fass, D., & Thorpe, C. (2018). Chemistry and enzymology of disulfide cross-linking in proteins. Chemical Reviews, 118(3), 1169–1198.

    Article  CAS  PubMed  Google Scholar 

  • Ferreon, A. C. M., & Deniz, A. A. (2011). Protein folding at single-molecule resolution. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1814(8), 1021–1029.

    Article  CAS  PubMed  Google Scholar 

  • Foegeding, E. A., & Davis, J. P. (2011). Food protein functionality: a comprehensive approach. Food Hydrocolloids, 25(8), 1853–1864.

    Article  CAS  Google Scholar 

  • Fu, Q. Q., Liu, R., Wang, H. O., Hua, C., Song, S. X., Zhou, G. H., & Zhang, W. G. (2019). Effects of oxidation in vitro on structures and functions of myofibrillar protein from beef muscles. Journal of Agricultural and Food Chemistry, 67, 5866–5873.

    Article  CAS  PubMed  Google Scholar 

  • Gillgren, T., & Stading, M. (2008). Material properties of maize, sorghum and oat protein films. Proc. Nordic Polymer Days 2008.

  • Giteru, S. G., Cridge, B., Oey, I., Ali, A., & Altermann, E. (2020). In-vitro degradation and toxicological assessment of pulsed electric fields crosslinked zein-chitosan-poly (vinyl alcohol) biopolymeric films. Food and Chemical Toxicology, 135, 111048.

    Article  CAS  PubMed  Google Scholar 

  • Goettig, P. (2016). Effects of glycosylation on the enzymatic activity and mechanisms of proteases. International Journal of Molecular Sciences, 17(12), 1969. https://doi.org/10.3390/ijms17121969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez, B., Munekata, P. E., Gavahian, M., Barba, F. J., Martí-Quijal, F. J., Bolumar, T., Campagnol, P. C. B., Tomasevic, I., & Lorenzo, J. M. (2019). Application of pulsed electric fields in meat and fish processing industries: an overview. Food Research International, 123, 95–105.

    Article  PubMed  Google Scholar 

  • Graña-Montes, R., De Groot, N. S., Castillo, V., Sancho, J., Velazquez-Campoy, A., & Ventura, S. (2012). Contribution of disulfide bonds to stability, folding, and amyloid fibril formation: the PI3-SH3 domain case. Antioxidants & Redox Signaling, 16(1), 1–15.

    Article  Google Scholar 

  • Gruner, P., Riechers, B., Semin, B., Lim, J., Johnston, A., Short, K., & Baret, J. C. (2016). Controlling molecular transport in minimal emulsions. Nature Communications, 7(1), 10392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero-Beltrán, J. Á., Sepulveda, D. R., Góngora-Nieto, M. M., Swanson, B., & Barbosa-Cánovas, G. V. (2010). Milk thermization by pulsed electric fields (PEF) and electrically induced heat. Journal of Food Engineering, 100(1), 56–60.

    Article  Google Scholar 

  • Han, Z., Cai, M. J., Cheng, J. H., & Sun, D. W. (2018). Effects of electric fields and electromagnetic wave on food protein structure and functionality: a review. Trends in Food Science & Technology, 75, 1–9.

    Article  CAS  Google Scholar 

  • Han, Z., Han, Y., Wang, J., Liu, Z., Buckow, R., & Cheng, J. (2020). Effects of pulsed electric field treatment on the preparation and physicochemical properties of porous corn starch derived from enzymolysis. Journal of Food Processing & Preservation, 44(3), e14353.

    Article  CAS  Google Scholar 

  • Hansen, S. F., Nielsen, S. D., Rasmusen, J. T., Larsen, L. B., & Wiking, L. (2020). Disulfide bond formation is not crucial for the heat-induced interaction between β-lactoglobulin and milk fat globule membrane proteins. Journal of Dairy Science, 103(7), 5874–5881. https://doi.org/10.3168/jds.2019-18066

    Article  CAS  PubMed  Google Scholar 

  • Hermawan, N., Evrendilek, G. A., Dantzer, W. R., Zhang, Q. H., & Richter, E. R. (2004). Pulsed electric field treatment of liquid whole egg inoculated with Salmonella enteritidis. Journal of Food Safety, 24(1), 71–85.

    Article  Google Scholar 

  • Higuera-Barraza, O. A., Del Toro-Sanchez, C. L., Ruiz-Cruz, S., & Marquez-Rıos, E. (2016). Effects of high-energy ultrasound on the functional properties of proteins. Ultrasonics Sonochemistry, 31, 558–562.

    Article  CAS  PubMed  Google Scholar 

  • Hong, J., Zeng, X. A., Brennan, C. S., Brennan, M., & Han, Z. (2016). Recent advances in techniques for starch esters and the applications: a review. Foods, 5(3), 50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou, Y., Wang, R., Gan, Z., Shao, T., Zhang, X., He, M., & Sun, A. (2019). Effect of cold plasma on blueberry juice quality. Food Chemistry, 290, 79–86. https://doi.org/10.1016/j.foodchem.2019.03.123

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y.-T., Ting, Y., Hu, J.-Y., & Hsieh, S.-C. (2017). Techniques and methods to study functional characteristics of emulsion systems. Journal of Food and Drug Analysis, 25(1), 16–26. https://doi.org/10.1016/j.jfda.2016.10.021

    Article  CAS  PubMed  Google Scholar 

  • Huang, H.-W., Chen, B.-Y., & Wang, C.-Y. (2018). Comparison of high pressure and high temperature short time processing on quality of carambola juice during cold storage. Journal of Food Science and Technology, 55(5), 1716–1725. https://doi.org/10.1007/s13197-018-3084-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illera, A. E., Sanz, M. T., Trigueros, E., Beltrán, S., & Melgosa, R. (2018). Effect of high pressure carbon dioxide on tomato juice: inactivation kinetics of pectin methylesterase and polygalacturonase and determination of other quality parameters. Journal of Food Engineering, 239, 64–71. https://doi.org/10.1016/j.jfoodeng.2018.06.027

    Article  CAS  Google Scholar 

  • Iqbal, A., Murtaza, A., Muhammad, Z., Elkhedir, A., Tao, M., & Xu, X. (2018). Inactivation, aggregation and conformational changes of polyphenol oxidase from quince (Cydonia oblonga Miller) juice subjected to thermal and high-pressure carbon dioxide treatment. Molecules, 23(7), 1743. https://doi.org/10.3390/molecules23071743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeger, H., Schulz, A., Karapetkov, N., & Knorr, D. (2009). Protective effect of milk constituents and sublethal injuries limiting process effectiveness during PEF inactivation of Lb. rhamnosus. International Journal of Food Microbiology, 134(1–2), 154–161.

    Article  CAS  PubMed  Google Scholar 

  • Ji, W., Li, M., Yang, T., Li, H., Li, W., Wang, J., & Ma, M. (2022). Effect of cold plasma on physical–biochemical properties and nutritional components of soybean sprouts. Food Research International, 161, 111766. https://doi.org/10.1016/j.foodres.2022.111766

    Article  CAS  PubMed  Google Scholar 

  • Jia, S., Zhang, N., Ji, H., Zhang, X., Dong, C., Yu, J., Yan, S., Chen, C., & Liang, L. (2022). Effects of atmospheric cold plasma treatment on the storage quality and chlorophyll metabolism of postharvest tomato. Foods, 11(24), 4088. https://doi.org/10.3390/foods11244088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, S., Ding, J., Andrade, J., Rababah, T. M., Almajwal, A., Abulmeaty, M. M., & Feng, H. (2017). Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrasonics Sonochemistry, 38, 835–842.

    Article  CAS  PubMed  Google Scholar 

  • Jin, T., Zhang, H., Hermawan, N., & Dantzer, W. (2009). Effects of pH and temperature on inactivation of Salmonella typhimurium DT104 in liquid whole egg by pulsed electric fields. International Journal of Food Science & Technology, 44(2), 367–372.

    Article  CAS  Google Scholar 

  • Jin, T. Z., & Aboelhaggag, R. M. (2022). Combined pulsed electric field with antimicrobial caps for extending shelf life of orange juice. Beverages, 8(4), 72. https://doi.org/10.3390/beverages8040072

    Article  CAS  Google Scholar 

  • Jin, W., Wang, Z., Peng, D., Shen, W., Zhu, Z., Cheng, S., Li, B., & Huang, Q. (2020). Effect of pulsed electric field on assembly structure of α-amylase and pectin electrostatic complexes. Food Hydrocolloids, 101, 105547.

    Article  CAS  Google Scholar 

  • Kang, D., Zou, Y., Cheng, Y., Xing, L., Zhou, G., & Zhang, W. (2016). Effects of power ultrasound on oxidation and structure of beef proteins during curing processing. Ultrasonics Sonochemistry, 33, 47–53. https://doi.org/10.1016/j.ultsonch.2016.04.024

    Article  CAS  PubMed  Google Scholar 

  • Kang, S.-W., Rahman, M. S., Kim, A.-N., Lee, K.-Y., Chun, J., Kerr, W. L., & Choi, S.-G. (2018). Yield and physicochemical properties of low fat tofu prepared using supercritical carbon dioxide treated soy flours with different fat levels. Journal of Food Science and Technology, 55(7), 2712–2720. https://doi.org/10.1007/s13197-018-3193-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantala, C., Supasin, S., Intra, P., & Rattanadecho, P. (2022). Evaluation of pulsed electric field and conventional thermal processing for microbial inactivation in Thai orange juice. Foods, 11(8), 1102. https://doi.org/10.3390/foods11081102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushik, N., Kaur, B. P., & Rao, P. S. (2016). Inactivation of polyphenol oxidase and peroxidase enzymes during pulsed, static and cyclic pressurization of litchi (Litchi chinensis ) juice. Food and Bioproducts Processing, 100, 412–423. https://doi.org/10.1016/j.fbp.2016.07.015

    Article  CAS  Google Scholar 

  • Kaushik, N., Rao, P. S., & Mishra, H. N. (2017). Effect of high pressure and thermal processing on spoilage-causing enzymes in mango (Mangifera indica). Food Research International, 100, 885–893. https://doi.org/10.1016/j.foodres.2017.07.056

    Article  CAS  PubMed  Google Scholar 

  • Kieliszek, M., & Misiewicz, A. (2014). Microbial transglutaminase and its application in the food industry. A review. Folia Microbiologica, 59(3), 241–250. https://doi.org/10.1007/s12223-013-0287-x

    Article  CAS  PubMed  Google Scholar 

  • Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O., & Schoessler, K. (2011). Emerging technologies in food processing. Annual Review of Food Science & Technology, 2, 203–235.

    Article  CAS  Google Scholar 

  • Koch, Y., Witt, J., Lammerskitten, A., Siemer, C., & Toepfl, S. (2022). The influence of pulsed electric fields (PEF) on the peeling ability of different fruits and vegetables. Journal of Food Engineering, 322, 110938. https://doi.org/10.1016/j.jfoodeng.2021.110938

    Article  Google Scholar 

  • Kosters, H. A., Broersen, K., De Groot, J., Simons, J. W. F., Wierenga, P., & de Jongh, H. H. (2003). Chemical processing as a tool to generate ovalbumin variants with changed stability. Biotechnology and Bioengineering, 84(1), 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Krebs, M. R., Devlin, G. L., & Donald, A. M. (2009). Amyloid fibril-like structure underlies the aggregate structure across the pH range for β-lactoglobulin. Biophysical Journal, 96(12), 5013–5019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda, Y. (2018). Biophysical studies of protein solubility and amorphous aggregation by systematic mutational analysis and a helical polymerization model. Biophysical Reviews, 10(2), 473–480. https://doi.org/10.1007/s12551-017-0342-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam, R. S., & Nickerson, M. T. (2013). Food proteins: a review on their emulsifying properties using a structure–function approach. Food Chemistry, 141(2), 975–984.

    Article  CAS  PubMed  Google Scholar 

  • Le, T. T., Bhandari, B., & Deeth, H. C. (2011). Chemical and physical changes in milk protein concentrate (MPC80) powder during storage. Journal of Agricultural and Food Chemistry, 59(10), 5465–5473.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. H., Woo, K. S., Yong, H. I., Jo, C., Lee, S. K., Lee, B. W., Oh, S.-K., Lee, Y.-Y., Lee, B., & Kim, H.-J. (2018). Assessment of microbial safety and quality changes of brown and white cooked rice treated with atmospheric pressure plasma. Food Science and Biotechnology, 27(3), 661–667. https://doi.org/10.1007/s10068-017-0297-6

    Article  CAS  PubMed  Google Scholar 

  • Lee, K.-Y., Rahman, M. S., Kim, A.-N., Gul, K., Kang, S.-W., Chun, J., Kerr, W. L., & Choi, S.-G. (2019). Quality characteristics and storage stability of low-fat tofu prepared with defatted soy flours treated by supercritical-CO2 and hexane. LWT, 100, 237–243. https://doi.org/10.1016/j.lwt.2018.10.073

    Article  CAS  Google Scholar 

  • Li, M., Li, X., Han, C., Ji, N., Jin, P., & Zheng, Y. (2019). Physiological and metabolomic analysis of cold plasma treated fresh-cut strawberries. Journal of Agricultural and Food Chemistry, 67(14), 4043–4053. https://doi.org/10.1021/acs.jafc.9b00656

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Lin, J. I. E., Chen, J., & Fang, T. (2016). Pulsed electric field-assisted enzymatic extraction of protein from abalone (Haliotis discus hannai Ino) viscera. Journal of Food Process Engineering, 39(6), 702–710.

    Article  Google Scholar 

  • Li, M., Zhang, W., Guo, C., Hu, X., & Yi, J. (2022). Role of pectin characteristics in orange juice stabilization: effect of high-pressure processing in combination with centrifugation pretreatments. International Journal of Biological Macromolecules, 215, 615–624. https://doi.org/10.1016/j.ijbiomac.2022.06.166

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Zhang, S., Jiang, P., Zhong, L., Lin, S., & Sun, N. (2021). Exploration of structure-activity relationship between IgG1 and IgE binding ability and spatial conformation in ovomucoid with pulsed electric field treatment. Lwt, 141, 110891.

    Article  CAS  Google Scholar 

  • Liao, L., Zhao, M., Ren, J., Zhao, H., Cui, C., & Hu, X. (2010). Effect of acetic acid deamidation-induced modification on functional and nutritional properties and conformation of wheat gluten. Journal of the Science of Food and Agriculture, 90(3), 409–417.

    Article  CAS  PubMed  Google Scholar 

  • Li-Chan, E. C. Y., & Lacroix, I. M. E. (2018). Properties of proteins in food systems: an introduction. Proteins in food processing (pp. 1–25). Woodhead Publishing.

    Google Scholar 

  • Liu, R., Warner, R., Zhou, G. H., & Zhang, W. G. (2018). Contribution of nitric oxide and protein S-nitrosylation to variation in fresh meat quality. Meat Science, 144, 135–148.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Wang, R., Liu, H., Wang, Y., Shi, Y., & Zhang, C. (2022). High-pressure treatment enhanced aromatic compound concentrations of melon juice and its mechanism. Frontiers in Nutrition, 9, 1052820. https://doi.org/10.3389/fnut.2022.1052820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Zhang, C., Wang, H., Wang, Y., Zhu, D., & Liu, H. (2023). Ultrasonic treatment maintains the flavor of the melon juice. Ultrasonics Sonochemistry, 92, 106284. https://doi.org/10.1016/j.ultsonch.2022.106284

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Hu, Z., Abeykoon, M., Stavitski, E., Attenkofer, K., Bauer, E. D., & Petrovic, C. (2021). Polaronic transport and thermoelectricity in Mn 3 Si 2 Te 6 single crystals. Physical Review B, 103(24), 245122.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhao, G., Zhao, M., Ren, J., & Yang, B. (2012). Improvement of functional properties of peanut protein isolate by conjugation with dextran through Maillard reaction. Food Chemistry, 131(3), 901–906.

    Article  CAS  Google Scholar 

  • Liu, Y. F., Oey, I., Bremer, P., Carne, A., & Silcock, P. (2017). Effects of pH, temperature and pulsed electric fields on the turbidity and protein aggregation of ovomucin-depleted egg white. Food Research International, 91, 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Malik, M. A., & Saini, C. S. (2018). Improvement of functional properties of sunflower protein isolates near isoelectric point: application of heat treatment. Lwt, 98, 411–417.

    Article  CAS  Google Scholar 

  • Malik, M. A., Sharma, H. K., & Saini, C. S. (2017). High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: effect on physicochemical and functional properties. Ultrasonics Sonochemistry, 39, 511–519. https://doi.org/10.1016/j.ultsonch.2017.05.026

    Article  CAS  PubMed  Google Scholar 

  • Manzocco, L., Plazzotta, S., Spilimbergo, S., & Nicoli, M. C. (2017). Impact of high-pressure carbon dioxide on polyphenoloxidase activity and stability of fresh apple juice. LWT - Food Science and Technology, 85, 363–371. https://doi.org/10.1016/j.lwt.2016.11.052

    Article  CAS  Google Scholar 

  • Manzoor, M. F., Ahmad, N., Aadil, R. M., Rahaman, A., Ahmed, Z., Rehman, A., Ahmed, Z., Rehman, A., Siddeeg, A., Zeng, X. A., & Manzoor, A. (2019). Impact of pulsed electric field on rheological, structural, and physicochemical properties of almond milk. Journal of Food Process Engineering, 42(8), e13299.

    Article  Google Scholar 

  • March, D., Bianco, V., & Franzese, G. (2021). Protein unfolding and aggregation near a hydrophobic interface. Polymers, 13(1), 156. https://doi.org/10.3390/polym13010156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marszałek, K., Woźniak, Ł, & Skąpska, S. (2016). The application of high pressure–mild temperature processing for prolonging the shelf-life of strawberry purée. High Pressure Research, 36(2), 220–234. https://doi.org/10.1080/08957959.2016.1172072

    Article  CAS  Google Scholar 

  • Martín-Belloso, O., & Sobrino-López, A. (2011). Combination of pulsed electric fields with other preservation techniques. Food and Bioprocess Technology, 4, 954–968.

    Article  Google Scholar 

  • Martins, J. T., Cerqueira, M. A., Souza, B. W., Carmo Avides, M. D., & Vicente, A. A. (2010). Shelf life extension of ricotta cheese using coatings of galactomannans from nonconventional sources incorporating nisin against Listeria monocytogenes. Journal of Agricultural and Food Chemistry, 58(3), 1884–1891.

    Article  CAS  PubMed  Google Scholar 

  • Melchior, S., Calligaris, S., Bisson, G., & Manzocco, L. (2020). Understanding the impact of moderate-intensity pulsed electric fields (MIPEF) on structural and functional characteristics of pea, rice and gluten concentrates. Food and Bioprocess Technology, 13, 2145–2155.

    Article  CAS  Google Scholar 

  • Migneault, I., Dartiguenave, C., Bertrand, M. J., & Waldron, K. C. (2004). Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 37(5), 790–802.

    Article  CAS  PubMed  Google Scholar 

  • Mirmoghtadaie, L., Aliabadi, S. S., & Hosseini, S. M. (2016). Recent approaches in physical modification of protein functionality. Food Chemistry, 199, 619–627.

    Article  CAS  PubMed  Google Scholar 

  • Mishyna, M., Keppler, J. K., & Chen, J. (2021). Techno-functional properties of edible insect proteins and effects of processing. Current Opinion in Colloid & Interface Science, 56, 101508.

    Article  CAS  Google Scholar 

  • Mohamad, A., Shah, A. K., & N. N., Sulaiman, A., Mohd Adzahan, N., & Aadil, R. M. (2021). Pulsed electric field of goat milk: impact on Escherichia coli ATCC 8739 and vitamin constituents. Journal of Food Process Engineering, 44(9), e13779.

    Article  CAS  Google Scholar 

  • Mohamad, A., Shah, N. N. A. K., Sulaiman, A., Mohd Adzahan, N., & Aadil, R. M. (2020). Impact of the pulsed electric field on physicochemical properties, fatty acid profiling, and metal migration of goat milk. Journal of Food Processing and Preservation, 44(12), e14940.

    Article  CAS  Google Scholar 

  • Monfort, S., Gayán, E., Saldaña, G., Puértolas, E., Condón, S., Raso, J., & Álvarez, I. (2010). Inactivation of Salmonella typhimurium and Staphylococcus aureus by pulsed electric fields in liquid whole egg. Innovative Food Science & Emerging Technologies, 11(2), 306–313.

    Article  CAS  Google Scholar 

  • Moreira, M. D. R., Pereda, M., Marcovich, N. E., & Roura, S. I. (2011). Antimicrobial effectiveness of bioactive packaging materials from edible chitosan and casein polymers: assessment on carrot, cheese, and salami. Journal of Food Science, 76(1), M54–M63.

    Article  CAS  PubMed  Google Scholar 

  • Moutiq, R., Misra, N. N., Mendonça, A., & Keener, K. (2020). In-package decontamination of chicken breast using cold plasma technology: microbial, quality and storage studies. Meat Science, 159, 107942. https://doi.org/10.1016/j.meatsci.2019.107942

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar, K., Nabi, B. G., Arshad, R. N., Roobab, U., Yaseen, B., Ranjha, M. M. A. N., & Ibrahim, S. A. (2022). Potential impact of ultrasound, pulsed electric field, high-pressure processing, microfludization against thermal treatments preservation regarding sugarcane juice (Saccharum officinarum). Ultrasonics Sonochemistry, 106194.

  • Nikfarjam, S., Jouravleva, E. V., Anisimov, M. A., & Woehl, T. J. (2020). Effects of protein unfolding on aggregation and gelation in lysozyme solutions. Biomolecules, 10(9), 1262. https://doi.org/10.3390/biom10091262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikmaram, N., Leong, S. Y., Koubaa, M., Zhu, Z., Barba, F. J., Greiner, R., Oey, I., & Roohinejad, S. (2017). Effect of extrusion on the anti-nutritional factors of food products: an overview. Food Control, 79, 62–73.

    Article  CAS  Google Scholar 

  • Niu, D., Zeng, X. A., Ren, E. F., Xu, F. Y., Li, J., Wang, M. S., & Wang, R. (2020). Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Research International, 137, 109715.

    Article  CAS  PubMed  Google Scholar 

  • Norwood, E.-A., Pezennec, S., Burgain, J., Briard-Bion, V., Schuck, P., Croguennec, T., et al. (2017). Crucial role of remaining lactose in whey protein isolate powders during storage. Journal of Food Engineering, 195, 206–216. https://doi.org/10.1016/j.jfoodeng.2016.10.010

    Article  CAS  Google Scholar 

  • Nowosad, K., Sujka, M., Pankiewicz, U., & Kowalski, R. (2021). The application of PEF technology in food processing and human nutrition. Journal of Food Science & Technology, 58, 397–411.

    Article  Google Scholar 

  • Palgan, I., Muñoz, A., Noci, F., Whyte, P., Morgan, D. J., Cronin, D. A., & Lyng, J. G. (2012). Effectiveness of combined pulsed electric field (PEF) and manothermosonication (MTS) for the control of Listeria innocua in a smoothie type beverage. Food Control, 25(2), 621–625.

    Article  Google Scholar 

  • Pandraju, S., & Rao, P. S. (2020). High-pressure processing of sugarcane juice (Saccharum officinarum) for shelf-life extension during ambient storage. Sugar Tech, 22(2), 340–353. https://doi.org/10.1007/s12355-019-00769-y

    Article  CAS  Google Scholar 

  • Panja, P. (2018). Green extraction methods of food polyphenols from vegetable materials. Current Opinion in Food Science, 23, 173–182.

    Article  Google Scholar 

  • Parniakov, O., Bals, O., Barba, F. J., Mykhailyk, V., Lebovka, N., & Vorobiev, E. (2018). Application of differential scanning calorimetry to estimate quality and nutritional properties of food products. Critical Reviews in Food Science & Nutrition, 58(3), 362–385.

    CAS  Google Scholar 

  • Parniakov, O., Barba, F. J., Grimi, N., Marchal, L., Jubeau, S., Lebovka, N., & Vorobiev, E. (2015). Pulsed electric field assisted extraction of nutritionally valuable compounds from microalgae Nannochloropsis spp. using the binary mixture of organic solvents and water. Innovative Food Science & Emerging Technologies, 27, 79–85.

    Article  CAS  Google Scholar 

  • Patil, S. M., Mehta, A., Jha, S., & Alexandrescu, A. T. (2011). Heterogeneous amylin fibril growth mechanisms imaged by total internal reflection fluorescence microscopy. Biochemistry, 50(14), 2808–2819.

    Article  CAS  PubMed  Google Scholar 

  • Pauwels, K., Van Molle, I., Tommassen, J., & Van Gelder, P. (2007). Chaperoning Anfinsen: the steric foldases. Molecular Microbiology, 64(4), 917–922. https://doi.org/10.1111/j.1365-2958.2007.05718.x

    Article  CAS  PubMed  Google Scholar 

  • Pereda, M., Aranguren, M. I., & Marcovich, N. E. (2009). Water vapor absorption and permeability of films based on chitosan and sodium caseinate. Journal of Applied Polymer Science, 111(6), 2777–2784.

    Article  CAS  Google Scholar 

  • Peters, J. P., Vergeldt, F. J., Boom, R. M., & van der Goot, A. J. (2017). Water-binding capacity of protein-rich particles and their pellets. Food Hydrocolloids, 65, 144–156.

    Article  CAS  Google Scholar 

  • Phan, H. T. M., Bartelt-Hunt, S., Rodenhausen, K. B., Schubert, M., & Bartz, J. C. (2015). Investigation of bovine serum albumin (BSA) attachment onto self-assembled monolayers (SAMs) using combinatorial quartz crystal microbalance with dissipation (QCM-D) and spectroscopic ellipsometry (SE). PloS one, 10(10), e0141282. https://doi.org/10.1371/journal.pone.0141282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piotto, S. P., Sessa, L., Concilio, S., & Iannelli, P. (2012). YADAMP: yet another database of antimicrobial peptides. International Journal of Antimicrobial Agents, 39(4), 346–351.

    Article  CAS  PubMed  Google Scholar 

  • Ponce, A. G., Roura, S. I., del Valle, C. E., & Moreira, M. R. (2008). Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: in vitro and in vivo studies. Postharvest Biology and Technology, 49(2), 294–300.

    Article  CAS  Google Scholar 

  • Porębska, I., Sokołowska, B., Skąpska, S., & Rzoska, S. J. (2017). Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control, 73, 24–30. https://doi.org/10.1016/j.foodcont.2016.06.005

    Article  CAS  Google Scholar 

  • Qian, J. Y., Ma, L. J., Wang, L. J., & Jiang, W. (2016). Effect of pulsed electric field on structural properties of protein in solid state. Lwt, 74, 331–337.

    Article  CAS  Google Scholar 

  • Qiu, S., Abbaspourrad, A., & Padilla-Zakour, O. I. (2021). Changes in the glutinous rice grain and physicochemical properties of its starch upon moderate treatment with pulsed electric field. Foods, 10(2), 395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, S., Abbaspourrad, A., & Padilla-Zakour, O. I. (2022). Prevention of the retrogradation of glutinous rice gel and sweetened glutinous rice cake utilizing pulsed electric field during refrigerated storage. Foods, 11(9), 1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjha, M. M. A., Kanwal, R., Shafique, B., Arshad, R. N., Irfan, S., Kieliszek, M., & Aadil, R. M. (2021). A critical review on pulsed electric field: a novel technology for the extraction of phytoconstituents. Molecules, 26(16), 4893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiner, A., Wildemann, D., Fischer, G., & Kiefhaber, T. (2008). Effect of thioxopeptide bonds on α-helix structure and stability. Journal of the American Chemical Society, 130(25), 8079–8084.

    Article  CAS  PubMed  Google Scholar 

  • Ribotta, P. D., Colombo, A., & Rosell, C. M. (2012). Enzymatic modifications of pea protein and its application in protein–cassava and corn starch gels. Food Hydrocolloids, 27(1), 185–190.

    Article  CAS  Google Scholar 

  • Rios-Corripio, G., la Peña, M. M., Welti-Chanes, J., & Guerrero-Beltrán, J. Á. (2022). Pulsed electric field processing of a pomegranate (Punica granatum L.) fermented beverage. Innovative Food Science & Emerging Technologies, 79, 103045. https://doi.org/10.1016/j.ifset.2022.103045

    Article  CAS  Google Scholar 

  • Roberts, C. J. (2014). Therapeutic protein aggregation: mechanisms, design, and control. Trends in Biotechnology, 32(7), 372–380. https://doi.org/10.1016/j.tibtech.2014.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues, R. M., Vicente, A. A., Petersen, S. B., & Pereira, R. N. (2019). Electric field effects on β-lactoglobulin thermal unfolding as a function of pH–Impact on protein functionality. Innovative Food Science & Emerging Technologies, 52, 1–7.

    Article  CAS  Google Scholar 

  • Roobab, U., Abida, A., Chacha, J. S., Athar, A., Madni, G. M., Ranjha, M. M. A. N., & Trif, M. (2022). Applications of innovative non-thermal pulsed electric field technology in developing safer and healthier fruit juices. Molecules, 27(13), 4031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rybak, K., Wiktor, A., Kaveh, M., Dadan, M., Witrowa-Rajchert, D., & Nowacka, M. (2022). Effect of thermal and non-thermal technologies on kinetics and the main quality parameters of red bell pepper dried with convective and microwave–convective methods. Molecules, 27(7), 2164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvia-Trujillo, L., Morales-de la Peña, M., Rojas-Graü, M. A., & Martín-Belloso, O. (2011). Microbial and enzymatic stability of fruit juice-milk beverages treated by high intensity pulsed electric fields or heat during refrigerated storage. Food Control, 22(10), 1639–1646.

    Article  CAS  Google Scholar 

  • Sampedro, F., & Rodrigo, D. (2015). Pulsed electric fields (PEF) processing of milk and dairy products. Emerging dairy processing technologies (pp. 115–148). Chichester, UK: John Wiley & Sons Ltd.

    Chapter  Google Scholar 

  • Sepulveda, D. R., Góngora-Nieto, M. M., Guerrero, J. A., & Barbosa-Cánovas, G. V. (2009). Shelf life of whole milk processed by pulsed electric fields in combination with PEF-generated heat. LWT-Food Science and Technology, 42(3), 735–739.

    Article  CAS  Google Scholar 

  • Shaik, L., & Chakraborty, S. (2022). Ultrasound processing of sweet lime juice: effect of matrix pH on microbial inactivation, enzyme stability, and bioactive retention. Journal of Food Process Engineering. https://doi.org/10.1111/jfpe.14231

    Article  Google Scholar 

  • Sharma, P., Oey, I., & Everett, D. W. (2016). Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk. Food Chemistry, 207, 34–42.

    Article  CAS  PubMed  Google Scholar 

  • Shirani, K., Shahidi, F., & Mortazavi, S. A. (2020). Investigation of decontamination effect of argon cold plasma on physicochemical and sensory properties of almond slices. International Journal of Food Microbiology, 335, 108892. https://doi.org/10.1016/j.ijfoodmicro.2020.108892

    Article  CAS  PubMed  Google Scholar 

  • Shorstkii, I., & Khudyakov, D. (2020). Influence of pulsed electrical discharge, hydrostatic pressure and temperature on rheological properties of sunflower cake during oil pressing. Heliyon, 6(1), e03046.

    Article  PubMed  Google Scholar 

  • Silva Freitas, D. D., & Abrahão-Neto, J. (2010). Batch purification of high-purity lysozyme from egg white and characterization of the enzyme modified by PEGylation. Pharmaceutical Biology, 48(5), 554–562.

    Article  PubMed  Google Scholar 

  • Silva, E. K., Alvarenga, V. O., Bargas, M. A., & Sant’Ana, A. S., & Meireles, M. A. A. (2018). Non-thermal microbial inactivation by using supercritical carbon dioxide: synergic effect of process parameters. The Journal of Supercritical Fluids, 139, 97–104. https://doi.org/10.1016/j.supflu.2018.05.013

    Article  CAS  Google Scholar 

  • Soltanzadeh, M., Peighambardoust, S. H., Gullon, P., Hesari, J., Gullón, B., Alirezalu, K., & Lorenzo, J. (2022). Quality aspects and safety of pulsed electric field (PEF) processing on dairy products: a comprehensive review. Food Reviews International, 38(sup1), 96–117.

    Article  Google Scholar 

  • Song, Q., Rune, C. J. B., Thybo, A. K., Clausen, M. P., Orlien, V., & Giacalone, D. (2023). Sensory quality and consumer perception of high pressure processed orange juice and apple juice. LWT, 173, 114303. https://doi.org/10.1016/j.lwt.2022.114303

    Article  CAS  Google Scholar 

  • Su, G., Zheng, L., Cui, C., Yang, B., Ren, J., & Zhao, M. (2011). Characterization of antioxidant activity and volatile compounds of Maillard reaction products derived from different peptide fractions of peanut hydrolysate. Food Research International, 44(10), 3250–3258.

    Article  CAS  Google Scholar 

  • Subaşı, B. G., Jahromi, M., Casanova, F., Capanoglu, E., Ajalloueian, F., & Mohammadifar, M. A. (2021). Effect of moderate electric field on structural and thermo-physical properties of sunflower protein and sodium caseinate. Innovative Food Science & Emerging Technologies, 67, 102593.

    Article  Google Scholar 

  • Sudarsan, A., & Keener, K. (2022). Inactivation of spoilage organisms on baby spinach leaves using high voltage atmospheric cold plasma (HVACP) and assessment of quality. Innovative Food Science & Emerging Technologies, 79, 103023. https://doi.org/10.1016/j.ifset.2022.103023

    Article  CAS  Google Scholar 

  • Sui, Q., Roginski, H., Williams, R. P., Versteeg, C., & Wan, J. (2011). Effect of pulsed electric field and thermal treatment on the physicochemical and functional properties of whey protein isolate. International Dairy Journal, 21(4), 206–213.

    Article  CAS  Google Scholar 

  • Sun-Waterhouse, D. (2013). Stability and bioaccessibility of fruit bioactives in foods: food component interactions and matrix effect. Bioactives in fruit: health benefits and functional foods (pp. 467–507)

    Chapter  Google Scholar 

  • Sun-Waterhouse, D., Zhao, M., & Waterhouse, G. I. (2014). Protein modification during ingredient preparation and food processing: approaches to improve food processability and nutrition. Food and Bioprocess Technology, 7, 1853–1893.

    Article  CAS  Google Scholar 

  • Suo, G., Zhou, C., Su, W., & Hu, X. (2022). Effects of ultrasonic treatment on color, carotenoid content, enzyme activity, rheological properties, and microstructure of pumpkin juice during storage. Ultrasonics Sonochemistry, 84, 105974. https://doi.org/10.1016/j.ultsonch.2022.105974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suppavorasatit, I., De Mejia, E. G., & Cadwallader, K. R. (2011). Optimization of the enzymatic deamidation of soy protein by protein-glutaminase and its effect on the functional properties of the protein. Journal of Agricultural and Food Chemistry, 59(21), 11621–11628.

    Article  CAS  PubMed  Google Scholar 

  • Szczepańska, J., Barba, F. J., Skąpska, S., & Marszałek, K. (2022). Changes in the polyphenolic profile and oxidoreductases activity under static and multi-pulsed high pressure processing of cloudy apple juice. Food Chemistry, 384, 132439. https://doi.org/10.1016/j.foodchem.2022.132439

    Article  CAS  PubMed  Google Scholar 

  • Szczepańska, J., Skąpska, S., Lorenzo, J. M., & Marszałek, K. (2021). The influence of static and multi-pulsed pressure processing on the enzymatic and physico-chemical quality, and antioxidant potential of carrot juice during refrigerated storage. Food and Bioprocess Technology, 14(1), 52–64. https://doi.org/10.1007/s11947-020-02577-9

    Article  CAS  Google Scholar 

  • Taha, A., Casanova, F., Šimonis, P., Stankevič, V., Gomaa, M. A., & Stirkė, A. (2022). Pulsed electric field: fundamentals and effects on the structural and techno-functional properties of dairy and plant proteins. Foods, 11(11), 1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo Hijo, A. A. C., Guinosa, R. E., & Silva, E. K. (2022). Ultrasound emulsification energy strategies impact the encapsulation efficiency of essential oils in colloidal systems. Journal of Molecular Liquids, 358, 119179. https://doi.org/10.1016/j.molliq.2022.119179

    Article  CAS  Google Scholar 

  • Torabian, G., Bahramian, B., Zambon, A., Spilimbergo, S., Adil, Q., Schindeler, A., Valtchev, P., & Dehghani, F. (2018). A hybrid process for increasing the shelf life of elderberry juice. The Journal of Supercritical Fluids, 140, 406–414. https://doi.org/10.1016/j.supflu.2018.07.023

    Article  CAS  Google Scholar 

  • Turgay-İzzetoğlu, G., Çokgezme, Ö. F., Döner, D., Ersoy, C., Çabas, B. M., & İçier, F. (2022). Cooking the chicken meat with moderate electric field: rheological properties and image processing of microstructure. Food and Bioprocess Technology, 15(5), 1082–1100.

    Article  Google Scholar 

  • Udgaonkar, J. B. (2013). Polypeptide chain collapse and protein folding. Archives of Biochemistry and Biophysics, 531(1–2), 24–33.

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay, R., & Chen, J. (2020). Rheology and tribology assessment of foods: a food oral processing perspective. Biopolymer-based formulations (pp. 697–715). Elsevier.

    Chapter  Google Scholar 

  • Vanga, S. K., Wang, J., Jayaram, S., & Raghavan, V. (2021). Effects of pulsed electric fields and ultrasound processing on proteins and enzymes: a review. Processes, 9(4), 722.

    Article  CAS  Google Scholar 

  • Vihinen, M. (2020). Solubility of proteins. ADMET and DMPK, 8(4), 391–399.

    PubMed  PubMed Central  Google Scholar 

  • Walkling-Ribeiro, M., Rodríguez-González, O., Jayaram, S., & Griffiths, M. W. (2011). Microbial inactivation and shelf life comparison of ‘cold’hurdle processing with pulsed electric fields and microfiltration, and conventional thermal pasteurisation in skim milk. International Journal of Food Microbiology, 144(3), 379–386.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Li, B., Guo, Y., Liu, C., Liu, J., Tan, B., Guo, Z., Wang, Z., & Jiang, L. (2022). Effects of ultrasound on the structural and emulsifying properties and interfacial properties of oxidized soybean protein aggregates. Ultrasonics Sonochemistry, 87, 106046. https://doi.org/10.1016/j.ultsonch.2022.106046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Wang, Y., Li, K., Bai, Y., Li, B., & Xu, W. (2020). Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate. LWT, 129, 109563. https://doi.org/10.1016/j.lwt.2020.109563

    Article  CAS  Google Scholar 

  • Wang, Y., Zhang, W., & Zhou, G. (2019). Effects of ultrasound-assisted frying on the physiochemical properties and microstructure of fried meatballs. International Journal of Food Science & Technology, 54(10), 2915–2926.

    Article  CAS  Google Scholar 

  • Wei, G. W. (2013). Multiscale, multiphysics and multidomain models I: basic theory. Journal of Theoretical and Computational Chemistry, 12(08), 1341006.

    Article  Google Scholar 

  • Wibowo, S., Essel, E. A., De Man, S., Bernaert, N., Van Droogenbroeck, B., Grauwet, T., Van Loey, A., & Hendrickx, M. (2019). Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses. Innovative Food Science & Emerging Technologies, 54, 64–77. https://doi.org/10.1016/j.ifset.2019.03.004

    Article  CAS  Google Scholar 

  • Wijaya, W., Patel, A. R., Setiowati, A. D., & Van der Meeren, P. (2017). Functional colloids from proteins and polysaccharides for food applications. Trends in Food Science & Technology, 68, 56–69.

    Article  CAS  Google Scholar 

  • Wimley, W. C. (2010). Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chemical Biology, 5(10), 905–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolynes, P. G. (2015). Evolution, energy landscapes and the paradoxes of protein folding. Biochimie, 119, 218–230.

    Article  CAS  PubMed  Google Scholar 

  • Wu, S., & Yang, R. (2023). Effect of high-pressure processing on polyphenol oxidase, melanosis and quality in ready-to-eat crabs during storage. LWT, 178, 114607. https://doi.org/10.1016/j.lwt.2023.114607

    Article  CAS  Google Scholar 

  • Xiang, B. Y., Simpson, M. V., Ngadi, M. O., & Simpson, B. K. (2011). Effect of pulsed electric field on the rheological and colour properties of soy milk. International Journal of Food Sciences & Nutrition, 62(8), 787–793.

    Article  CAS  Google Scholar 

  • Xu, F. Y., Wen, Q. H., Wang, R., Li, J., Chen, B. R., & Zeng, X. A. (2021). Enhanced synthesis of succinylated whey protein isolate by pulsed electric field pretreatment. Food Chemistry, 363, 129892.

    Article  CAS  PubMed  Google Scholar 

  • Xue, F., & Li, C. (2023). Effects of ultrasound assisted cell wall disruption on physicochemical properties of camellia bee pollen protein isolates. Ultrasonics Sonochemistry, 92, 106249. https://doi.org/10.1016/j.ultsonch.2022.106249

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Zamani, S., Liang, L., & Chen, L. (2021). Extraction methods significantly impact pea protein composition, structure and gelling properties. Food Hydrocolloids, 117, 106678.

    Article  CAS  Google Scholar 

  • Yang, W., Tu, Z., Wang, H., Zhang, L., Gao, Y., Li, X., & Tian, M. (2017). Immunogenic and structural properties of ovalbumin treated by pulsed electric fields. International Journal of Food Properties, 20(sup3), S3164–S3176.

    Article  CAS  Google Scholar 

  • Yi, F., Wang, J., Xiang, Y., Yun, Z., Pan, Y., Jiang, Y., & Zhang, Z. (2022). Physiological and quality changes in fresh-cut mango fruit as influenced by cold plasma. Postharvest Biology and Technology, 194, 112105. https://doi.org/10.1016/j.postharvbio.2022.112105

    Article  CAS  Google Scholar 

  • Zambon, A., Facco, P., Morbiato, G., Toffoletto, M., Poloniato, G., Sut, S., Andrigo, P., & Dall’Acqua, S., de Bernard, M., & Spilimbergo, S. (2022). Promoting the preservation of strawberry by supercritical CO2 drying. Food Chemistry, 397, 133789. https://doi.org/10.1016/j.foodchem.2022.133789

    Article  CAS  PubMed  Google Scholar 

  • Zare, L., Mollakhalili-Meybodi, N., Fallahzadeh, H., & Arab, M. (2022). Effect of atmospheric pressure cold plasma (ACP) treatment on the technological characteristics of quinoa flour. LWT, 155, 112898. https://doi.org/10.1016/j.lwt.2021.112898

    Article  CAS  Google Scholar 

  • Zhang, C., Yang, Y. H., Zhao, X. D., Zhang, L., Li, Q., Wu, C., Ding, X., & Qian, J. Y. (2021a). Assessment of impact of pulsed electric field on functional, rheological and structural properties of vital wheat gluten. LWT, 147, 111536.

    Article  CAS  Google Scholar 

  • Zhang, J., Ghasemi, N., Zare, F., Duley, J. A., Cowley, D. M., Shaw, P. N., Koorts, P., & Bansal, N. (2023). Nanosecond pulsed electric field treatment of human milk: effects on microbiological inactivation, whey proteome and bioactive protein. Food Chemistry, 406, 135073.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Tang, T., Jiang, Z., Liu, Y., & Jiang, A. (2019a). The modification of ovalbumin surface properties treated by pulsed electric field combined with divalent metal ions. Food Chemistry, 293, 455–462.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Wang, L. J., Jiang, W., & Qian, J. Y. (2017a). Effect of pulsed electric field on functional and structural properties of canola protein by pretreating seeds to elevate oil yield. Lwt, 84, 73–81.

    Article  CAS  Google Scholar 

  • Zhang, S., Sun, L., Ju, H., Bao, Z., Zeng, X. A., & Lin, S. (2021b). Research advances and application of pulsed electric field on proteins and peptides in food. Food Research International, 139, 109914.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Zhang, M., Xing, J., & Lin, S. (2019b). A possible mechanism for enhancing the antioxidant activity by pulsed electric field on pine nut peptide Glutamine-Tryptophan-Phenylalanine-Histidine. Journal of Food Biochemistry, 43(3), e12714.

    PubMed  Google Scholar 

  • Zhang, T., Sun, R., Ding, M., Tao, L., Liu, L., Tao, N., Wang, X., & Zhong, J. (2020). Effect of extraction methods on the structural characteristics, functional properties, and emulsion stabilization ability of Tilapia skin gelatins. Food Chemistry, 328, 127114.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z. H., Han, Z., Zeng, X. A., & Wang, M. S. (2017b). The preparation of Fe-glycine complexes by a novel method (pulsed electric fields). Food Chemistry, 219, 468–476.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z. H., Wang, L. H., Zeng, X. A., Han, Z., & Wang, M. S. (2017c). Effect of pulsed electric fields (PEFs) on the pigments extracted from spinach (Spinacia oleracea L.). Innovative Food Science & Emerging Technologies, 43, 26–34.

    Article  Google Scholar 

  • Zhao, Q., Ding, L., Xia, M., Huang, X., Isobe, K., Handa, A., & Cai, Z. (2021). Role of lysozyme on liquid egg white foaming properties: interface behavior, physicochemical characteristics and protein structure. Food Hydrocolloids, 120, 106876.

    Article  CAS  Google Scholar 

  • Zhao, W., Tang, Y., Lu, L., Chen, X., & Li, C. (2014). Pulsed electric fields processing of protein-based foods. Food & Bioprocess Technology, 7, 114–125.

    Article  CAS  Google Scholar 

  • Zhao, W., Yang, R., Zhang, H. Q., Zhang, W., Hua, X., & Tang, Y. (2011). Quantitative and real time detection of pulsed electric field induced damage on Escherichia coli cells and sublethally injured microbial cells using flow cytometry in combination with fluorescent techniques. Food Control, 22(3–4), 566–573.

    Article  Google Scholar 

  • Zhao, Y., Chen, Z., Li, J., Xu, M., Shao, Y., & Tu, Y. (2016). Formation mechanism of ovalbumin gel induced by alkali. Food Hydrocolloids, 61, 390–398. https://doi.org/10.1016/j.foodhyd.2016.04.041

    Article  CAS  Google Scholar 

  • Zinoviadou, K. G., Koutsoumanis, K. P., & Biliaderis, C. G. (2009). Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Science, 82(3), 338–345.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., Higa, S., Fang, C., Fang, Y., Zhang, W., & Yamaguchi, T. (2017). B (OH) 4− hydration and association in sodium metaborate solutions by X-ray diffraction and empirical potential structure refinement. Physical Chemistry Chemical Physics, 19(40), 27878–27887.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z., Shang, X., Wang, Z., Sun, C., & Zhang, L. (2022). Effect of high-pressure treatment on the quality of a Hericium erinaceus: millet composite beverage. Journal of Food Quality, 2022, 1–12. https://doi.org/10.1155/2022/2456921

    Article  CAS  Google Scholar 

  • Ziuzina, D., Misra, N. N., Han, L., Cullen, P. J., Moiseev, T., Mosnier, J. P., Keener, K., Gaston, E., Vilaró, I., & Bourke, P. (2020). Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innovative Food Science & Emerging Technologies, 59, 102229. https://doi.org/10.1016/j.ifset.2019.102229

    Article  CAS  Google Scholar 

  • Zongo, P. A., Khalloufi, S., Mikhaylin, S., & Ratti, C. (2022). Pulsed electric field and freeze-thawing pretreatments for sugar uptake modulation during osmotic dehydration of mango. Foods, 11(17), 2551. https://doi.org/10.3390/foods11172551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rafeeya Shams wrote the original draft; Sobiya Manzoor was responsible for formal analysis; Irtiqa Shabir revised the manuscript; Aamir Hussain Dar was responsible for conceptualisation and supervision; Kshirod Kumar Dash was responsible for visualisation and editing; Shivangi Srivastava was responsible for reviewing and editing figures; Vinay Kumar Pandey was responsible for writing, reviewing, and editing; Iqra Bashir was responsible for formal analysis; and Shafat Ahmad Khan was responsible for visualisation. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Aamir Hussain Dar or Kshirod Kumar Dash.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams, R., Manzoor, S., Shabir, I. et al. Pulsed Electric Field-Induced Modification of Proteins: A Comprehensive Review. Food Bioprocess Technol 17, 351–383 (2024). https://doi.org/10.1007/s11947-023-03117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03117-x

Keywords

Navigation