Skip to main content

Advertisement

Log in

UV-Assisted Autolysis for Nutrient Bioconversion of Sea Cucumber (Stichopus horrens) Body Wall

  • Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Enzymatic hydrolysis is a green approach for nutrient bioconversion of sea cucumber body wall to recover sulfated polysaccharides. However, formation of high level of advanced glycation end products (AGEs) can potentially negate health benefits of the functional food. In this study, UV-assisted autolysis was employed to optimize nutrient bioconversion of Stichopus horrens body wall using extreme UV dosage (324,000-648,000 J/m2), different autolysis temperatures (40–60 °C) and time (3–5 h). Parallel biochemical changes indicate that UV irradiation promoted the activation of endogenous enzymes, leading to the proteolysis of the body wall and the subsequent dissolution of sulfated polysaccharides. Changes in the amide band I region of the Fourier-transform infrared (FTIR) spectra of autolyzed body wall residue reflected the loss of α-helix secondary structures of collagen which exacerbated at autolysis temperatures beyond 50 °C. The maximum yield of sulfated polysaccharides and antioxidant activities were obtained at the condition (486,000 J/m2 of UV dosage, 60 ℃, and 4 h of autolysis) by the optimization using the central composite design. The nutritional composition and safety aspect of the autolysate was compared with hydrolysate from enzymatic hydrolysis and hot water extract. Quantification of 5-hydroxymethylfurfural (HMF) showed that UV-assisted autolysis could mitigate HMF formation (0.12 mg/kg) by 97.6% compared to enzymatic hydrolysis (5.13 mg/kg) and 42.9% compared to hot water extraction (0.21 mg/kg). The UV-assisted autolysis with metal ion further enhanced the extraction process of sulfated polysaccharides from sea cucumber body wall and reduction of the processing contaminants. Thus, UV-assisted autolysis offers a safer alternative for the nutrient bioconversion of sea cucumber body wall, particularly for the development of functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ABTS:

2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid

AGEs:

Advanced glycation end products

CAC:

Codex Alimentarius Commission

DPPH:

2,2-diphenyl-1-picryl-hydrazyl-hydrate

EC:

European Commission

ECM:

Extracellular matrix

EFSA:

European Food Safety Authority

FTIR:

Fourier-transform infrared

FuCS:

Fucosylated chondroitin sulfate

GAE:

Gallic acid equivalent

GAG:

Glycosaminoglycan

GlcA:

β-D-glucuronic acid

GalNAc:

N-acetyl β-D-galactosamine

HMF:

5-Hydroxymethyl furfural

Hyp:

Hydroxyproline

LOD:

Limit of detection

LOQ:

Limit of quantification

MCT:

Mutable collagenous tissue

MMP:

Matrix metalloprotease

NRVs:

Codex Nutrient Reference Values

ROS:

Reactive oxygen species

RSM:

Response surface methodology

SHA:

S. horrens Autolysate

SHA-M:

S. horrens Autolysate enhanced with metal ion

SHE:

S. horrens Extract

SHH:

S. horrens Hydrolysate

TE:

Trolox equivalent

TPC:

Total phenolic content

UV:

Ultraviolet

WI:

Whiteness index

References

  • Abdo, A. A. A., Al-Dalali, S., Hou, Y., Aleryani, H., Shehzad, Q., Asawmahi, O., AL-Farga, A., Mohammed, B., Liu, X., & Sang, Y. (2023). Modification of marine bioactive peptides: Strategy to improve the biological activity, stability, and taste properties. Food and Bioprocess Technology, 0123456789, https://doi.org/10.1007/s11947-023-03142-w.

  • Althunibat, O., Ridzwan, B., Taher, M., Daud, J., Jauhari Arief Ichwan, S., & Qaralleh, H. (2013). Antioxidant and cytotoxic properties of two sea cucumbers, Holothuria edulis lesson and Stichopus horrens Selenka. Acta Biologica Hungarica, 64(1), 10–20. https://doi.org/10.1556/ABiol.64.2013.1.2.

    Article  CAS  PubMed  Google Scholar 

  • Andreini, C., Bertini, I., Cavallaro, G., Holliday, G. L., & Thornton, J. M. (2008). Metal ions in biological catalysis: From enzyme databases to general principles. Journal of Biological Inorganic Chemistry, 13(8), 1205–1218. https://doi.org/10.1007/s00775-008-0404-5.

    Article  CAS  PubMed  Google Scholar 

  • AOAC. (2023). Official methods of analysis of international (22th ed.). Association of Official Analytical Chemist.

  • AOAC International. (2016). Official methods of analysis of AOAC International (20th ed.). AOAC International.

  • Barut Gök, S. (2021). UV-C treatment of apple and grape juices by modified UV-C reactor based on dean vortex technology: Microbial, physicochemical and sensorial parameters evaluation. Food and Bioprocess Technology, 14(6), 1055–1066. https://doi.org/10.1007/s11947-021-02624-z.

    Article  CAS  Google Scholar 

  • Barzkar, N., Fariman, A., G., & Taheri, A. (2017). Proximate composition and mineral contents in the body wall of two species of sea cucumber from Oman Sea. Environmental Science and Pollution Research, 24(23), 18907–18911. https://doi.org/10.1007/s11356-017-9379-5.

    Article  CAS  PubMed  Google Scholar 

  • Bordbar, S., Anwar, F., & Saari, N. (2011). High-value components and bioactives from sea cucumbers for functional foods - a review. Marine Drugs, 9(10), 1761–1805. https://doi.org/10.3390/md9101761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozec, L., & Odlyha, M. (2011). Thermal denaturation studies of collagen by microthermal analysis and atomic force microscopy. Biophysical Journal, 101(1), 228–236. https://doi.org/10.1016/j.bpj.2011.04.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, R. A., Surayot, U., & You, S. G. (2017). Structural characterization of immunostimulating protein-sulfated fucan complex extracted from the body wall of a sea cucumber, Stichopus japonicus. International Journal of Biological Macromolecules, 99, 539–548. https://doi.org/10.1016/j.ijbiomac.2017.03.026.

    Article  CAS  PubMed  Google Scholar 

  • Capuano, E., & Fogliano, V. (2011). Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. Lwt, 44(4), 793–810. https://doi.org/10.1016/j.lwt.2010.11.002.

    Article  CAS  Google Scholar 

  • Csordás, G., Renken, C., Várnai, P., Walter, L., Weaver, D., Buttle, K. F., Balla, T., Mannella, C. A., & Hajnóczky, G. (2006). Structural and functional features and significance of the physical linkage between ER and mitochondria. Journal of Cell Biology, 174(7), 915–921. https://doi.org/10.1083/jcb.200604016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, C., Wang, P., Cui, N., Song, S., Liang, H., & Ji, A. (2016). Sulfated polysaccharide isolated from the sea cucumber Stichopus japonicas promotes the SDF-1α/CXCR4 axis-induced NSC migration via the PI3K/Akt/FOXO3a, ERK/MAPK, and NF-κB signaling pathways. Neuroscience Letters, 616, 57–64. https://doi.org/10.1016/j.neulet.2016.01.041.

    Article  CAS  PubMed  Google Scholar 

  • Damaiyanti, D. W. (2015). Characterization of water extract gold sea cucumber (Stichopus Hermanni). Dental Journal, 9(20), 74–81.

    Google Scholar 

  • Dong, A., Huang, P., & Caughey, W. S. (1990). Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry, 29(13), 3303–3308. https://doi.org/10.1021/bi00465a022.

    Article  CAS  PubMed  Google Scholar 

  • Dong, X., Li, Y., Li, Y., Song, L., Cheng, S., Li, D., Zhu, B. W., Zhou, D., & Tan, M. (2017). Combination of NMR and MRI techniques for non-invasive assessment of sea cucumber (Stichopus japonicas) tenderization during low-temperature heating process. Food Analytical Methods, 10(7), 2207–2216. https://doi.org/10.1007/s12161-016-0770-5.

    Article  Google Scholar 

  • Dong, X., Qi, H., Feng, D., He, B., Nakamura, Y., Yu, C., & Zhu, B. (2018). Oxidative stress involved in textural changes of sea cucumber Stichopus japonicus body wall during low-temperature treatment. International Journal of Food Properties, 21(1), 2646–2659. https://doi.org/10.1080/10942912.2018.1559187.

    Article  CAS  Google Scholar 

  • Dong, X., Yang, X., Li, H., Che, H., Song, L., Chen, X., Xie, W., & Qi, H. (2021). Effects of oxidation on the structure of collagen fibers of sea cucumber (Apostichopus japonicus) body wall during thermal processing. Lwt, 138(10), 1–8. https://doi.org/10.1016/j.lwt.2020.110528.

    Article  CAS  Google Scholar 

  • EFSA. (2010). Scientific opinion on the safety of hydroxymethylfurfural (HMF). EFSA Journal, 8(2), 1–52.

    Google Scholar 

  • Elvevoll, E. O., James, D., Toppe, J., Gamarro, E. G., & Jensen, I. J. (2022). Food Safety risks posed by Heavy Metals and Persistent Organic pollutants (POPs) related to consumption of Sea cucumbers. Foods, 11, 3992. https://doi.org/10.3390/foods11243992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Commission (2006). Commission Regulation (EC) no 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, L 364/5-L 364/24.

  • European Commission (2015). Commission Regulation (EU) 2015/1005 amending regulation (EC) No. 1881/2006 as regards maximum levels of lead in certain foodstuffs. Official Journal of the European Union, L 161/9- L 161/13.

  • FAO/WHO. (2021). Guidelines on Nutrition labelling. Codex Alimentarius Guideline No. CXG 1-1985. Codex Alimentarius Commission. Rome.

  • FAO/WHO. (2022). Standard for Honey. Codex Alimentarius Standard No. CXS 12-1981. Codex Alimentarius Commission. Rome.

  • Farndale, R. W., Buttle, D. J., & Barrett, A. J. (1986). Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. BBA - General Subjects, 883(2), 173–177. https://doi.org/10.1016/0304-4165(86)90306-5.

    Article  CAS  PubMed  Google Scholar 

  • Feng, J., Zhang, L., Tang, X., Xia, X., Hu, W., & Zhou, P. (2021). Season and geography induced variation in sea cucumber (Stichopus japonicus) nutritional composition and gut microbiota. Journal of Food Composition and Analysis, 101(2), https://doi.org/10.1016/j.jfca.2021.103838.

  • Forghani, B., Ebrahimpour, A., Bakar, J., Hamid, A. A., Hassan, Z., & Saari, N. (2012). Enzyme hydrolysates from Stichopus horrens as a new source for angiotensin-converting enzyme inhibitory peptides. Hindawi Publishing Corporation, 1–9. https://doi.org/10.1155/2012/236384.

  • Frontuto, D., Carullo, D., Harrison, S. M., Brunton, N. P., Ferrari, G., Lyng, J. G., & Pataro, G. (2019). Optimization of pulsed electric fields-assisted extraction of polyphenols from potato peels using response surface methodology. Food and Bioprocess Technology, 12(10), 1708–1720. https://doi.org/10.1007/s11947-019-02320-z.

    Article  CAS  Google Scholar 

  • Holyavka, M., Pankova, S., Koroleva, V., Vyshkvorkina, Y., Lukin, A., Kondratyev, M., & Artyukhov, V. (2019). Influence of UV radiation on molecular structure and catalytic activity of free and immobilized bromelain, ficin and papain. Journal of Photochemistry and Photobiology B: Biology, 201(2), 111681. https://doi.org/10.1016/j.jphotobiol.2019.111681.

    Article  CAS  PubMed  Google Scholar 

  • Inan-Eroglu, E., Ayaz, A., & Buyuktuncer, Z. (2020). Formation of advanced glycation endproducts in foods during cooking process and underlying mechanisms: A comprehensive review of experimental studies. Nutrition Research Reviews, 33(1), 77–89. https://doi.org/10.1017/S0954422419000209.

    Article  PubMed  Google Scholar 

  • Ishak, N. H., & Sarbon, N. M. (2018). A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing. Food and Bioprocess Technology, 11(1), 2–16. https://doi.org/10.1007/s11947-017-1940-1.

    Article  CAS  Google Scholar 

  • ISO (1994). Meat and Meat Products – Determination of Hydroxyproline Con- tent. ISO 3496.

  • Jiang, S., Yin, H., Li, R., Shi, W., Mou, J., & Yang, J. (2021). The activation effects of fucoidan from sea cucumber Stichopus chloronotus on RAW264.7 cells via TLR2/4-NF-κB pathway and its structure-activity relationship. Carbohydrate Polymers, 270(5), 118353. https://doi.org/10.1016/j.carbpol.2021.118353.

    Article  CAS  PubMed  Google Scholar 

  • Kaewjumpol, G., Oruna-Concha, M. J., Niranjan, K., & Thawornchinsombut, S. (2018). The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction. Journal of the Science of Food and Agriculture, 98(9), 3290–3298. https://doi.org/10.1002/jsfa.8832.

    Article  CAS  PubMed  Google Scholar 

  • Kamarudin, K. R., Rehan, M. M., & Bahaman, N. A. (2017). Morphological and molecular identifcation of sea cucumber species holothuria scabra, stichopus horrens and stichopus ocellatus from Kudat, Sabah, Malaysia. Pertanika Journal of Tropical Agricultural Science, 40(1), 161–171.

    Google Scholar 

  • Karami, Z., & Akbari-adergani, B. (2019). Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Technology, 56(2), 535–547. https://doi.org/10.1007/s13197-018-3549-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, S., Dar, A. H., Shams, R., Aga, M. B., Siddiqui, M. W., Mir, S. A., Rizvi, Q. U., eain, H., Khan, S. A., & Altaf, A. (2022). Applications of Ultraviolet light–emitting Diode Technology in Horticultural produce: A systematic review and Meta-analysis. Food and Bioprocess Technology, 15(3), 487–497. https://doi.org/10.1007/s11947-021-02742-8.

    Article  CAS  Google Scholar 

  • Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39(8), 549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x.

    Article  CAS  PubMed  Google Scholar 

  • Kowalski, S., Lukasiewicz, M., Duda-Chodak, A., & Ziȩc, G. (2013). 5-hydroxymethyl-2-furfural (HMF) -heat-induced formation, occurrence in food and biotransformation - A review. Polish Journal of Food and Nutrition Sciences, 63(4), 207–225. https://doi.org/10.2478/v10222-012-0082-4.

    Article  CAS  Google Scholar 

  • La Cava, E. L. M., & Sgroppo, S. C. (2019). Combined effect of UV-C light and mild heat on microbial quality and antioxidant capacity of grapefruit juice by flow continuous reactor. Food and Bioprocess Technology, 12(4), 645–653. https://doi.org/10.1007/s11947-019-2239-1.

    Article  CAS  Google Scholar 

  • Lane, R. S., Ange, K. S., Zolghadr, B., Liu, X., Schäffer, C., Linhardt, R. J., & DeAngelis, P. L. (2017). Expanding glycosaminoglycan chemical space: Towards the creation of sulfated analogs, novel polymers and chimeric constructs. Glycobiology, 27(7), 646–656. https://doi.org/10.1093/glycob/cwx021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Li, S., Yan, L., Ding, T., Linhardt, R. J., Yu, Y., Liu, X., Liu, D., Ye, X., & Chen, S. (2017). Fucosylated chondroitin sulfate oligosaccharides exert anticoagulant activity by targeting at intrinsic tenase complex with low FXII activation: Importance of sulfation pattern and molecular size. European Journal of Medicinal Chemistry, 139, 191–200. https://doi.org/10.1016/j.ejmech.2017.07.065.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Gao, Y., Qi, Y., xia, Song, Z., yuan, Li, Z., bo, Lin, Y. tong, & Zhao, Q. (2021a). Assessment of the nutritional value of cultured sea cucumber apostichopus japonicus. Journal of Aquatic Food Product Technology, 30(7), 868–879. https://doi.org/10.1080/10498850.2021.1949769.

  • Li, Y., Li, M., Xu, B., Li, Z., Qi, Y., Song, Z., Zhao, Q., Du, B., & Yang, Y. (2021b). The current status and future perspective in combination of the processing technologies of sulfated polysaccharides from sea cucumbers: A comprehensive review. Journal of Functional Foods, 87(6), 104744. https://doi.org/10.1016/j.jff.2021.104744.

    Article  CAS  Google Scholar 

  • Liu, Y. X., Zhou, D. Y., Ma, D. D., Liu, Y. F., Li, D. M., Dong, X. P., Tan, M. Q., Du, M., & Zhu, B. W. (2016). Changes in collagenous tissue microstructures and distributions of cathepsin L in body wall of autolytic sea cucumber (Stichopus japonicus). Food Chemistry, 212, 341–348. https://doi.org/10.1016/j.foodchem.2016.05.173.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. X., Zhou, D. Y., Liu, Z. Q., Lu, T., Song, L., Li, D. M., Dong, X. P., Qi, H., Zhu, B. W., & Shahidi, F. (2018). Structural and biochemical changes in dermis of sea cucumber (Stichopus japonicus) during autolysis in response to cutting the body wall. Food Chemistry, 240(7), 1254–1261. https://doi.org/10.1016/j.foodchem.2017.08.071.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z. Q., Liu, Y. X., Zhou, D. Y., Liu, X. Y., Dong, X. P., Li, D. M., & Shahidi, F. (2019). The role of matrix metalloprotease (MMP) to the autolysis of sea cucumber (Stichopus japonicus). Journal of the Science of Food and Agriculture, 99(13), 5752–5759. https://doi.org/10.1002/jsfa.9843.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z. Q., Zhou, D. Y., Liu, Y. X., Liu, X. Y., Liu, Y., Liu, B., Song, L., & Shahidi, F. (2020). In vivo mechanism of action of matrix metalloprotease (MMP) in the autolysis of sea cucumber (Stichopus japonicus). Journal of Food Processing and Preservation, 44(4), 1–9. https://doi.org/10.1111/jfpp.14383.

    Article  CAS  Google Scholar 

  • Luevano-Contreras, C., & Chapman-Novakofski, K. (2010). Dietary advanced glycation end products and aging. Nutrients, 2(12), 1247–1265. https://doi.org/10.3390/nu2121247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamelona, J., Pelletier, É., Girard-Lalancette, K., Legault, J., Karboune, S., & Kermasha, S. (2007). Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa. Food Chemistry, 104(3), 1040–1047. https://doi.org/10.1016/j.foodchem.2007.01.016.

    Article  CAS  Google Scholar 

  • Masre, S. F., Yip, G. W., Sirajudeen, K. N. S., & Ghazali, F. C. (2012). Quantitative analysis of sulphated glycosaminoglycans content of Malaysian sea cucumber Stichopus Hermanni and Stichopus vastus. Natural Product Research, 26(7), 684–689. https://doi.org/10.1080/14786419.2010.545354.

    Article  CAS  PubMed  Google Scholar 

  • Medyantseva, E. P., Vertlib, M. G., & Budnikov, G. K. (1998). Metal ions as enzyme effectors. Russian Chemical Reviews, 67(3), 225–232. https://doi.org/10.1070/rc1998v067n03abeh000228.

    Article  Google Scholar 

  • Mohsen, M., Wang, Q., Zhang, L., Sun, L., Lin, C., & Yang, H. (2019). Heavy metals in sediment, microplastic and sea cucumber Apostichopus japonicus from farms in China. Marine Pollution Bulletin, 143(4), 42–49. https://doi.org/10.1016/j.marpolbul.2019.04.025.

    Article  CAS  PubMed  Google Scholar 

  • Mou, J., Li, Q., Qi, X., & Yang, J. (2018). Structural comparison, antioxidant and anti-inflammatory properties of fucosylated chondroitin sulfate of three edible sea cucumbers. Carbohydrate Polymers, 185(1), 41–47. https://doi.org/10.1016/j.carbpol.2018.01.017.

    Article  CAS  PubMed  Google Scholar 

  • Naghdi, S., Rezaei, M., Tabarsa, M., & Abdollahi, M. (2023). Parallel extraction of sulfated polysaccharides and protein hydrolysate from skipjack tuna head and their bioactive and functional properties. Food and Bioprocess Technology, 1258–1279. https://doi.org/10.1007/s11947-022-02988-w.

  • Nikoo, M., Xu, X., Regenstein, J. M., & Noori, F. (2021). Autolysis of Pacific white shrimp (Litopenaeus vannamei) processing by-products: Enzymatic activities, lipid and protein oxidation, and antioxidant activity of hydrolysates. Food Bioscience, 39(6), 100844. https://doi.org/10.1016/j.fbio.2020.100844.

    Article  CAS  Google Scholar 

  • Oh, J. H., Kim, A., Park, J. M., Kim, S. H., & Chung, A. S. (2006). Ultraviolet B-induced matrix metalloproteinase-1 and – 3 secretions are mediated via PTEN/Akt pathway in human dermal fibroblasts. Journal of Cellular Physiology, 209(3), 775–785. https://doi.org/10.1002/jcp.20754.

    Article  CAS  PubMed  Google Scholar 

  • Patar, A., Jamalullail, S. M. S. S., Jaafar, H., & Abdullah, J. M. (2012). Analysis of sea cucumber body wall extracts from perhentian stichopus variegatus species using gas chromatography mass spectrophotometry. European Journal of Scientific Research, 68(1), 54–59.

    Google Scholar 

  • Phanturat, P., Benjakul, S., Visessanguan, W., & Roytrakul, S. (2010). Use of pyloric caeca extract from bigeye snapper (Priacanthus macracanthus) for the production of gelatin hydrolysate with antioxidative activity. LWT - Food Science and Technology, 43(1), 86–97. https://doi.org/10.1016/j.lwt.2009.06.010.

    Article  CAS  Google Scholar 

  • Pomin, V. H. (2014). Holothurian fucosylated chondroitin sulfate. Marine Drugs, 1(12), 232–254. https://doi.org/10.3390/md12010232.

    Article  CAS  Google Scholar 

  • Pomin, V. H., & Mourão, P. A. S. (2008). Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology, 18(12), 1016–1027. https://doi.org/10.1093/glycob/cwn085.

    Article  CAS  PubMed  Google Scholar 

  • Purcell, S., Samyn, Y., & Conand, C. (2012). Commercially important sea cucumbers of the world. FAO Species Catalogue for Fishery Purposes No. 6.

  • Qi, H., Dong, X. P., Cong, L. N., Gao, Y., Liu, L., Mikiro, T., & Zhu, B. W. (2007). Purification and characterization of a cysteine-like protease from the body wall of the sea cucumber Stichopus japonicus. Fish Physiology and Biochemistry, 33(2), 181–188. https://doi.org/10.1007/s10695-007-9129-6.

    Article  CAS  Google Scholar 

  • Qi, H., Dong, X. F., Zhao, Y. P., Li, N., Fu, H., Feng, D. D., Liu, L., & Yu, C. X. (2016a). ROS production in homogenate from the body wall of sea cucumber Stichopus japonicus under UVA irradiation: ESR spin-trapping study. Food Chemistry, 192, 358–362. https://doi.org/10.1016/j.foodchem.2015.07.030.

    Article  CAS  PubMed  Google Scholar 

  • Qi, H., Fu, H., Dong, X., Feng, D., Li, N., Wen, C., Nakamura, Y., & Zhu, B. (2016b). Apoptosis induction is involved in UVA-induced autolysis in sea cucumber Stichopus japonicus. Journal of Photochemistry and Photobiology B: Biology, 158, 130–135. https://doi.org/10.1016/j.jphotobiol.2016.02.034.

    Article  CAS  PubMed  Google Scholar 

  • Qin, Y., Yuan, Q., Zhang, Y., Li, J., Zhu, X., Wen, J., Liu, J., Zhao, L., Zhao, J., & Zhao, L. (2018). Enzyme-assisted extraction optimization, characterization and antioxidant activity of polysaccharides from sea cucumber Phyllophorus proteus. Molecules, 23(3), 1–19. https://doi.org/10.3390/molecules23030590.

    Article  CAS  Google Scholar 

  • Rabotyagova, O. S., Cebe, P., & Kaplan, D. L. (2008). Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Materials Science and Engineering C, 28(8), 1420–1429. https://doi.org/10.1016/j.msec.2008.03.012.

    Article  CAS  PubMed  Google Scholar 

  • Rasyid, A. (2018). Nutritional value and heavy metals contents of the dried sea cucumber Stichopus vastus from Salemo island, Indonesia. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 9(2), 739–746. https://doi.org/10.29244/jitkt.v9i2.19306.

    Article  Google Scholar 

  • Rumahlatu, D., De Fretes, C. C., & Kakisina, P. (2020). Concentration of heavy metal hg, Au and fe in sediments, water, and tissue damage of golden sea cucumber Stichopus herrmanni (semper, 1868) (Holothuroidea; stichopodidae) in kayeli bay, Indonesia. Acta Aquatica Turcica, 16(1), 113–123. https://doi.org/10.22392/actaquatr.603602.

    Article  Google Scholar 

  • Scott, J. E. (1992). Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. The FASEB Journal, 6(9), 2639–2645. https://doi.org/10.1096/fasebj.6.9.1612287.

    Article  CAS  PubMed  Google Scholar 

  • Senadheera, T. R. L., Dave, D., & Shahidi, F. (2021). Antioxidant potential and physicochemical properties of protein hydrolysates from body parts of North Atlantic sea cucumber (Cucumaria frondosa). Food Production Processing and Nutrition, 3(1), https://doi.org/10.1186/s43014-020-00049-3.

  • Song, S., Wu, S., Ai, C., Xu, X., Zhu, Z., Cao, C., Yang, J., & Wen, C. (2018). Compositional analysis of sulfated polysaccharides from sea cucumber (Stichopus japonicus) released by autolysis reaction. International Journal of Biological Macromolecules, 114, 420–425. https://doi.org/10.1016/j.ijbiomac.2018.03.137.

    Article  CAS  PubMed  Google Scholar 

  • Thiansilakul, Y., Benjakul, S., & Shahidi, F. (2007). Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chemistry, 103(4), 1385–1394. https://doi.org/10.1016/j.foodchem.2006.10.055.

    Article  CAS  Google Scholar 

  • Trotter, J. A., Salgado, J. P., & Koob, T. J. (1997). Mineral content and salt-dependent viscosity in the dermis of the sea cucumber Cucumaria frondosa. Comparative Biochemistry and Physiology - A Physiology, 116(4), 329–335. https://doi.org/10.1016/S0300-9629(96)00214-9.

  • Ustyuzhanina, N. E., Bilan, M. I., Dmitrenok, A. S., Shashkov, A. S., Nifantiev, N. E., & Usov, A. I. (2018). Two structurally similar fucosylated chondroitin sulfates from the holothurian species Stichopus chloronotus and Stichopus horrens. Carbohydrate Polymers, 189, 10–14. https://doi.org/10.1016/j.carbpol.2018.02.008.

    Article  CAS  PubMed  Google Scholar 

  • Vásquez-Mazo, P., Loredo, A. G., Ferrario, M., & Guerrero, S. (2019). Development of a novel milk Processing to produce yogurt with Improved Quality. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-019-02269-z.

    Article  Google Scholar 

  • Wang, J., Chang, Y., Wu, F., Xu, X., & Xue, C. (2018). Fucosylated chondroitin sulfate is covalently associated with collagen fibrils in sea cucumber Apostichopus japonicus body wall. Carbohydrate Polymers, 186(1), 439–444. https://doi.org/10.1016/j.carbpol.2018.01.041.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Song, Y., Chang, Y., Liu, Y., Chen, G., & Xue, C. (2022). Dynamic changes of peptidome and release of polysaccharide in sea cucumber (Apostichopus japonicus) hydrolysates depending on enzymatic hydrolysis approaches. Food Science and Human Wellness, 11(5), 1331–1341. https://doi.org/10.1016/j.fshw.2022.04.025.

    Article  CAS  Google Scholar 

  • Wen, J., Hu, C., & Fan, S. (2010). Chemical composition and nutritional quality of sea cucumbers. Journal of the Science of Food and Agriculture, 90(14), 2469–2474. https://doi.org/10.1002/jsfa.4108.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H. T., Li, D. M., Zhu, B. W., Sun, J. J., Zheng, J., Wang, F. L., Konno, K., & Jiang, X. (2013). Proteolysis of noncollagenous proteins in sea cucumber, Stichopus japonicus, body wall: Characterisation and the effects of cysteine protease inhibitors. Food Chemistry, 141(2), 1287–1294. https://doi.org/10.1016/j.foodchem.2013.03.088.

    Article  CAS  PubMed  Google Scholar 

  • Xia, Y., Liu, Z., & Li, Z. (2012). Effects of high hydrostatic pressure treatment on physicochemical characteristics of sea cucumber. Journal of Food Science and Engineering, 2, 227–238.

    Google Scholar 

  • Xiong, Q., Song, Z., Hu, W., Liang, J., Jing, Y., He, L., Huang, S., Wang, X., Hou, S., Xu, T., Chen, J., Zhang, D., Shi, Y., Li, H., & Li, S. (2020). Methods of extraction, separation, purification, structural characterization for polysaccharides from aquatic animals and their major pharmacological activities. Critical Reviews in Food Science and Nutrition, 60(1), 48–63. https://doi.org/10.1080/10408398.2018.1512472.

    Article  CAS  PubMed  Google Scholar 

  • Xu, C., Zhang, R., & Wen, Z. (2018). Bioactive compounds and biological functions of sea cucumbers as potential functional foods. Journal of Functional Foods, 49(8), 73–84. https://doi.org/10.1016/j.jff.2018.08.009.

    Article  CAS  Google Scholar 

  • Yang, J. F., Gao, R. C., Wu, H. T., Li, P. F., Hu, X. S., Zhou, D. Y., Zhu, B. W., & Su, Y. C. (2015). Analysis of apoptosis in Ultraviolet-Induced Sea Cucumber (Stichopus japonicus) melting using terminal deoxynucleotidyl-transferase-mediated dUTP Nick End-Labeling Assay and cleaved Caspase-3 immunohistochemistry. Journal of Agricultural and Food Chemistry, 63(43), 9601–9608. https://doi.org/10.1021/acs.jafc.5b03453.

    Article  CAS  PubMed  Google Scholar 

  • Yin, P., Jia, A., Heimann, K., Zhang, M., Liu, X., Zhang, W., & Liu, C. (2020). Hot water pretreatment-induced significant metabolite changes in the sea cucumber Apostichopus japonicus. Food Chemistry, 314(12), 126211. https://doi.org/10.1016/j.foodchem.2020.126211.

    Article  CAS  PubMed  Google Scholar 

  • Yuniati, R., & Sulardiono, B. (2019). Exploration of the collagen of non commercial sea cucumber Holothuria atra and commercial sea cucumber Stichopus vastus in the Karimunjawa Islands, Indonesia. Indo Pacific Journal of Ocean Life, 3(1), 18–23. https://doi.org/10.13057/oceanlife/o030103.

    Article  Google Scholar 

  • Zha, F., Wei, B., Chen, S., Dong, S., Zeng, M., & Liu, Z. (2015). The Maillard reaction of a shrimp by-product protein hydrolysate: Chemical changes and inhibiting effects of reactive oxygen species in human HepG2 cells. Food and Function, 6(6), 1919–1927. https://doi.org/10.1039/c5fo00296f.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, C. C., Yang, Y., Wu, H. T., Zhu, Z. M., Tang, Y., Yu, C. P., Sun, N., Lv, Q., Han, J. R., Li, A. T., Yan, J. N., & Cha, Y. (2016). Characterization of proteolysis in muscle tissues of sea cucumber Stichopus japonicus. Food Science and Biotechnology, 25(6), 1529–1535. https://doi.org/10.1007/s10068-016-0237-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, J., Wu, H. T., Dong, X. P., Zhang, S., Zhang, M. M., & Zhu, B. W. (2010). Establishment of evaluation indicators for autolysis of sea cucumber based on alternation in main chemical compositions. Journal of Dalian Polytech University (in Chinese), 29, 391–395.

    CAS  Google Scholar 

  • Zheng, J., Zhi-yuan, S., Hai-tao, W. U., Di, Y. U., & Zhi-yu, F. U. (2018). Optimization of sea cucumber body wall autolysis conditions by response surface methodology and analysis its influence factors. Journal of Food Safety and Quality (in Chinese). 9(22).

  • Zhong, M., Hu, C., Ren, C., Luo, X., & Cai, Y. (2016). Characterization of a main extracellular matrix autoenzyme from the dermis of sea cucumber stichopus monotuberculatus: Collagenase. International Journal of Food Properties, 19(11), 2495–2509. https://doi.org/10.1080/10942912.2015.1076456.

    Article  CAS  Google Scholar 

  • Zhu, B. W., Zhao, L. L., Sun, L. M., Li, D. M., Murata, Y., Yu, L., & Zhang, L. (2008a). Purification and characterization of a cathepsin L-like enzyme from the body wall of the sea cucumber Stichopus japonicus. Bioscience Biotechnology and Biochemistry, 72(6), 1430–1437. https://doi.org/10.1271/bbb.70741.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B., Zheng, J., Zhang, Z., Dong, X., Zhao, L., & Tada, M. (2008b). Autophagy plays a potential role in the process of sea cucumber body wall melting induced by UV irradiation. Wuhan University Journal of Natural Sciences, 13(2), 232–238. https://doi.org/10.1007/s11859-008-0220-3.

    Article  CAS  Google Scholar 

  • Zhu, Z., Zhu, B., Ai, C., Lu, J., Wu, S., Liu, Y., Wang, L., Yang, J., Song, S., & Liu, X. (2018). Development and application of a HPLC-MS/MS method for quantitation of fucosylated chondroitin sulfate and fucoidan in sea cucumbers. Carbohydrate Research, 466(1), 11–17. https://doi.org/10.1016/j.carres.2018.07.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Higher Education Malaysia through Transdisciplinary Research Grant Scheme [TRGS/1/2020/USM/02/2/3].

Author information

Authors and Affiliations

Authors

Contributions

Nada Itorul Umam: investigation, formal analysis, writing–original draft; Alifdalino Sulaiman: conceptualization, writing–review; Wong Yong Foo: resources, writing–review; Annette Jaya-Ram: resources, writing–review; Sau Pinn Woo: resources, writing–review, funding acquisition; Musfirah Zulkurnain: conceptualization, writing–review and editing, funding acquisition, resources, supervision.

Corresponding author

Correspondence to Musfirah Zulkurnain.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The Authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umam, N.I., Sulaiman, A., Wong, Y.F. et al. UV-Assisted Autolysis for Nutrient Bioconversion of Sea Cucumber (Stichopus horrens) Body Wall. Food Bioprocess Technol (2023). https://doi.org/10.1007/s11947-023-03227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-023-03227-6

Keywords

Navigation