Skip to main content
Log in

Green Synthesis of SnO2 Nanoparticles from Laurus nobilis L. Extract for Enhanced Gelatin-Based Films and CEF@SnO2 for Efficient Antibacterial Activity

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The green synthesis method was used to prepare SnO2 nanoparticles (NPs) from Laurus nobilis L. aqueous extract. Gelatin-based films are a promising substitute for traditional plastics due to their eco-friendliness, low cost, and pliability. However, they have some drawbacks such as high water solubility, poor opacity, and permeability to vapor. The use of synthesized SnO2 NPs can help address these concerns. The GEL/SnO2 film has enhanced morphological and physicochemical properties, with antibacterial properties that could extend the shelf life of perishable items like strawberries, contributing to reducing food waste. To improve their antibacterial activity, the SnO2 NPs were functionalized with the cefazolin (CEF) drug. The synthesized SnO2 NPs and the CEF@SnO2 nanocomposite (NC) were characterized using various techniques such as UV-Vis, FTIR, SEM, and XRD. The results showed that the particle sizes of SnO2 NPs and CEF@SnO2 NC were 28 nm and 35 nm, respectively, and SEM analysis revealed spherical-shaped agglomerated particles for both. The optical bandgap energy was calculated to be 3.3 and 2.34 eV for SnO2 NPs and CEF@SnO2 NC, respectively. The antibacterial activity exhibits an excellent inhibition zone for synthesized SnO2 NPs and the CEF@SnO2 NC with different concentrations (1, 3, and 5 mM) against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. CEF@SnO2 NC revealed a strong effect compared to SnO2 NPs, where 5 mM shows the highest inhabitation zone. Molecular docking studies supported the experimental data, indicating the interaction between proteins and the CEF@SnO2. This approach offers an innovative way of synthesizing drug-loaded SnO2 NPs as functional biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data are contained within the article.

References

  • Abdullah, J. A. A., Jiménez-Rosado, M., Benítez, J. J., Guerrero, A., & Romero, A. (2022a). Biopolymer-Based Films Reinforced with FexOy-Nanoparticles. Polymers, 14(21), 4487.

    CAS  Google Scholar 

  • Abdullah, J. A. A., Jiménez-Rosado, M., Guerrero, A., & Romero, A. (2022b). Gelatin-based biofilms with FexOy-NPs incorporated for antioxidant and antimicrobial applications. Materials, 15(5), 1966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alghamdi, H. M., Abutalib, M., Mannaa, M. A., Nur, O., Abdelrazek, E., & Rajeh, A. (2022). Modification and development of high bioactivities and environmentally safe polymer nanocomposites doped by Ni/ZnO nanohybrid for food packaging applications. Journal of Materials Research and Technology, 19, 3421–3432.

    Article  CAS  Google Scholar 

  • Althamthami, M., Temam, E. G., Temam, H. B., Hasan, G. G., & Malfi, N. (2022). Influence of hole-scavenger and different withdrawn speeds on photocatalytic activity of Co3O4 thin films under sunlight irradiation. Ceramics International, 48(21), 31570–31578.

    Article  CAS  Google Scholar 

  • Amininezhad, S. M., Rezvani, A., Amouheidari, M., Amininejad, S. M., & Rakhshani, S. (2015). The antibacterial activity of SnO2 nanoparticles against Escherichia coli and Staphylococcus aureus. Zahedan Journal of Research in Medical Sciences, 17(9).

  • Andreuccetti, C., Carvalho, R. A., Galicia-García, T., Martinez-Bustos, F., González-Nuñez, R., & Grosso, C. R. (2012). Functional properties of gelatin-based films containing Yucca schidigera extract produced via casting, extrusion and blown extrusion processes: A preliminary study. Journal of Food Engineering, 113(1), 33–40.

    Article  CAS  Google Scholar 

  • Arularasu, M., Harb, M., & Sundaram, R. (2020). Synthesis and characterization of cellulose/TiO2 nanocomposite: Evaluation of in vitro antibacterial and in silico molecular docking studies. Carbohydrate Polymers, 249, 116868.

    Article  Google Scholar 

  • Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., & Qamar, M. U. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance, 11, 1645.

  • Banerjee, D., Sen, D., & Chattopadhyay, K. (2013). Simple chemical synthesis of porous carbon spheres and its improved field emission by water vapor adsorption. Microporous and Mesoporous Materials, 171, 201–207.

    Article  CAS  Google Scholar 

  • Barala, M., Mohan, D., Sanghi, S., Siwach, B., Kumari, S., & Yadav, S. (2019). Optical properties of PS/ZnO nanocomposites foils prepared by casting method. Paper presented at the AIP Conference Proceedings.

  • Barikloo, H., & Ahmadi, E. (2018). Shelf life extension of strawberry by temperatures conditioning, chitosan coating, modified atmosphere, and clay and silica nanocomposite packaging. Scientia Horticulturae, 240, 496–508.

    Article  CAS  Google Scholar 

  • Bhawna, C., & A. K., Gupta, A., Kumar, S., Kumar, P., Singh, R., Kumar, V. (2020). Synthesis, antimicrobial activity, and photocatalytic performance of Ce doped SnO2 nanoparticles. Frontiers in Nanotechnology, 2, 595352.

    Article  Google Scholar 

  • Cao, C., Wang, Y., Zheng, S., Zhang, J., Li, W., Li, B., & Yu, J. (2020). Poly (butylene adipate-co-terephthalate)/titanium dioxide/silver composite biofilms for food packaging application. Lwt, 132, 109874.

  • Cao, N., Li, M., Zhao, Y., Qiu, L., Zou, X., Zhang, Y., & Sun, L. (2016). Fabrication of SnO2/porous silica/polyethyleneimine nanoparticles for pH-responsive drug delivery. Materials Science and Engineering: C, 59, 319–323.

    Article  CAS  PubMed  Google Scholar 

  • de Vargas, V. H., Marczak, L. D. F., Flôres, S. H., & Mercali, G. D. (2022). Advanced technologies applied to enhance properties and structure of films and coatings: A review. Food and Bioprocess Technology, 15(6), 1224–1247.

    Article  Google Scholar 

  • Diallo, A., Ngom, B., Park, E., & Maaza, M. (2015). Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties. Journal of Alloys and Compounds, 646, 425–430.

    Article  CAS  Google Scholar 

  • Drobota, M., Vlad, S., Gradinaru, L. M., Bargan, A., Radu, I., Butnaru, M., . . . & Aflori, M. (2022). Composite materials based on gelatin and iron oxide nanoparticles for MRI accuracy. Materials, 15(10), 3479.

  • Duan, J., Wu, R., Strik, B. C., & Zhao, Y. (2011). Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biology and Technology, 59(1), 71–79.

    Article  CAS  Google Scholar 

  • Elango, G., Kumaran, S. M., Kumar, S. S., Muthuraja, S., & Roopan, S. M. (2015). Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 145, 176–180.

    Article  CAS  PubMed  Google Scholar 

  • Gennadios, A., Weller, C. L., & Gooding, C. H. (1994). Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. Journal of Food Engineering, 21(4), 395–409.

    Article  Google Scholar 

  • Geppert, M., & Himly, M. (2021). Iron oxide nanoparticles in bioimaging–an immune perspective. Frontiers in Immunology, 12, 688927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gvozdenko, A., Siddiqui, S., Blinov, A., Golik, A., Nagdalian, A., Maglakelidze, D., & Sizonenko, M. (2022). Synthesis of CuO nanoparticles stabilized with gelatin for potential use in food packaging applications. Scientific Reports, 12(1), 12843.

  • Habeeb, S. A., Hammadi, A. H., Abed, D., & Al-Jibouri, L. F. (2022). Green synthesis of metronidazole or clindamycin-loaded hexagonal zinc oxide nanoparticles from Ziziphus extracts and its antibacterial activity. Pharmacia, 69(3), 855–864.

    Article  CAS  Google Scholar 

  • Hasan, G. G., Khelef, A., Chaabia, N., Tedjani, M. L., & Althamthami, M. (2023a). Electrochemical deposition of Ag nanoparticles on ITO-coated glass: Effect of different cyclic voltammetry scan rates on Ag deposition. Ferroelectrics, 602(1), 121–134.

    Article  CAS  Google Scholar 

  • Hasan, G. G., Mohammed, H. A., Althamthami, M., Khelef, A., Laouini, S. E., & Meneceur, S. (2023b). Synergistic effect of novel biosynthesis SnO2@ Fe3O4 nanocomposite: A comprehensive study of its photocatalytic of Dyes & antibiotics, antibacterial, and antimutagenic activities. Journal of Photochemistry and Photobiology a: Chemistry, 443, 114874.

    Article  CAS  Google Scholar 

  • He, Q., Zhang, Y., Cai, X., & Wang, S. (2016). Fabrication of gelatin–TiO2 nanocomposite film and its structural, antibacterial and physical properties. International Journal of Biological Macromolecules, 84, 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Jamzad, M., & Kamari Bidkorpeh, M. (2020). Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. Journal of Nanostructure in Chemistry, 10, 193–201.

    Article  CAS  Google Scholar 

  • Jiang, L., Sun, G., Zhou, Z., Sun, S., Wang, Q., Yan, S., . . . & Zhou, B. (2005). Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts. The Journal of Physical Chemistry B, 109(18), 8774–8778.

  • Jiang, Y., Li, Y., Chai, Z., & Leng, X. (2010). Study of the physical properties of whey protein isolate and gelatin composite films. Journal of Agricultural and Food Chemistry, 58(8), 5100–5108.

    Article  CAS  PubMed  Google Scholar 

  • Kanmani, P., & Rhim, J.-W. (2014a). Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids, 35, 644–652.

    Article  CAS  Google Scholar 

  • Kanmani, P., & Rhim, J.-W. (2014b). Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chemistry, 148, 162–169.

    Article  CAS  PubMed  Google Scholar 

  • Karimi, N., Khorashadizadeh, M., Hanafi-Bojd, M. Y., & Alemzadeh, E. (2023). Cefazolin-loaded double-shelled hollow mesoporous silica nanoparticles/polycaprolactone nanofiber composites: A delivery vehicle for regenerative purposes. Advanced Pharmaceutical Bulletin, 13(2), 328.

    Article  CAS  PubMed  Google Scholar 

  • Karuppiah, C., Palanisamy, S., Chen, S.-M., Emmanuel, R., Ali, M. A., Muthukrishnan, P., . . . & Al-Hemaid, F. M. (2014). Green biosynthesis of silver nanoparticles and nanomolar detection of p-nitrophenol. Journal of Solid State Electrochemistry, 18, 1847–1854.

  • Kaur, A., & Kumar, R. (2019). Enhanced bactericidal efficacy of polymer stabilized silver nanoparticles in conjugation with different classes of antibiotics. RSC Advances, 9(2), 1095–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur, A., Preet, S., Kumar, V., Kumar, R., & Kumar, R. (2019). Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Colloids and Surfaces B: Biointerfaces, 176, 62–69.

    Article  CAS  PubMed  Google Scholar 

  • Kazemi, M., Akbari, A., Sabouri, Z., Soleimanpour, S., Zarrinfar, H., Khatami, M., & Darroudi, M. (2021). Green synthesis of colloidal selenium nanoparticles in starch solutions and investigation of their photocatalytic, antimicrobial, and cytotoxicity effects. Bioprocess and Biosystems Engineering, 44, 1215–1225.

    Article  CAS  PubMed  Google Scholar 

  • Khojasteh-Taheri, R., Ghasemi, A., Meshkat, Z., Sabouri, Z., Mohtashami, M., & Darroudi, M. (2023). Green synthesis of silver nanoparticles using Salvadora persica and Caccinia macranthera extracts: Cytotoxicity analysis and antimicrobial activity against antibiotic-resistant bacteria. Applied Biochemistry and Biotechnology, 1–16.

  • Kunrath, M. F., Leal, B. F., Hubler, R., de Oliveira, S. D., & Teixeira, E. R. (2019). Antibacterial potential associated with drug-delivery built TiO2 nanotubes in biomedical implants. AMB Express, 9(1), 1–13.

    Article  CAS  Google Scholar 

  • Kuswandi, B. (2017). Environmental friendly food nano-packaging. Environmental Chemistry Letters, 15(2), 205–221.

    Article  CAS  Google Scholar 

  • Lang, W., Yang, Q., Song, X., Yin, M., & Zhou, L. (2017). Cu nanoparticles immobilized on montmorillonite by biquaternary ammonium salts: A highly active and stable heterogeneous catalyst for cascade sequence to indole-2-carboxylic esters. RSC Advances, 7(23), 13754–13759.

    Article  CAS  Google Scholar 

  • Mahlaule-Glory, L., Mbita, Z., Mathipa, M., Tetana, Z., & Hintsho-Mbita, N. (2019). Biological therapeutics of AgO nanoparticles against pathogenic bacteria and A549 lung cancer cells. Materials Research Express, 6(10), 105402.

    Article  CAS  Google Scholar 

  • Manimaran, M., Muthuvel, A., & Said, N. M. (2022). Microwave-assisted green synthesis of SnO2 nanoparticles and their photocatalytic degradation and antibacterial activities. Nanotechnology for Environmental Engineering, 1–11.

  • Mehmood, Z., Sadiq, M. B., & Khan, M. R. (2020). Gelatin nanocomposite films incorporated with magnetic iron oxide nanoparticles for shelf life extension of grapes. Journal of Food Safety, 40(4), e12814.

    Article  CAS  Google Scholar 

  • Mills, A., & Hazafy, D. (2009). Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sensors and Actuators B: Chemical, 136(2), 344–349.

    Article  CAS  Google Scholar 

  • Mimura, H., Gato, K., Kitamura, S., Kitagawa, T., & Kohda, S. (2002). Effect of water content on the solid-state stability in two isomorphic clathrates of cephalosporin: Cefazolin sodium pentahydrate (α Form) and FK041 hydrate. Chemical and Pharmaceutical Bulletin, 50(6), 766–770.

    Article  CAS  PubMed  Google Scholar 

  • Mohammed Mohammed, H. A., Souhaila, M., Eddine, L. S., Hasan, G. G., Kir, I., & Mahboub, M. S. (2023). A novel biosynthesis of MgO/PEG nanocomposite for organic pollutant removal from aqueous solutions under sunlight irradiation. Environmental Science and Pollution Research, 1–10.

  • Nadeem, F., Jiang, D., Tahir, N., Alam, M., Zhang, Z., Yi, W., . . . & Zhang, Q. (2020). Defect engineering in SnO2 nanomaterials: Pathway to enhance the biohydrogen production from agricultural residue of corn stover. Applied Materials Today, 21, 100850.

  • Najjar, M., Hosseini, H. A., Masoudi, A., Sabouri, Z., Mostafapour, A., Khatami, M., & Darroudi, M. (2021). Green chemical approach for the synthesis of SnO2 nanoparticles and its application in photocatalytic degradation of Eriochrome Black T dye. Optik, 242, 167152.

    Article  CAS  Google Scholar 

  • Neethirajan, S., & Jayas, D. S. (2011). Nanotechnology for the food and bioprocessing industries. Food and Bioprocess Technology, 4, 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Organization, W. H. (2014). Antimicrobial resistance global report on surveillance: 2014 summary. Retrieved from

  • Ortiz-Duarte, G., Martínez-Hernández, G. B., Casillas-Peñuelas, R., & Pérez-Cabrera, L. E. (2021). Evaluation of biopolymer films containing silver–chitosan nanocomposites. Food and Bioprocess Technology, 14, 492–504.

    Article  CAS  Google Scholar 

  • Oun, A. A., & Rhim, J.-W. (2017). Carrageenan-based hydrogels and films: Effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocolloids, 67, 45–53.

    Article  CAS  Google Scholar 

  • Pereira, P. F., Picciani, P. H., Calado, V. M., & Tonon, R. V. (2020). Gelatin-based nanobiocomposite films as sensitive layers for monitoring relative humidity in food packaging. Food and Bioprocess Technology, 13, 1063–1073.

    Article  CAS  Google Scholar 

  • Phothisarattana, D., & Harnkarnsujarit, N. (2022). Migration, aggregations and thermal degradation behaviors of TiO2 and ZnO incorporated PBAT/TPS nanocomposite blown films. Food Packaging and Shelf Life, 33, 100901.

    Article  CAS  Google Scholar 

  • Priyadarshini, S., Gopinath, V., Priyadharsshini, N. M., MubarakAli, D., & Velusamy, P. (2013). Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids and Surfaces B: Biointerfaces, 102, 232–237.

    Article  CAS  PubMed  Google Scholar 

  • Qamar, M., Shahid, S., Khan, S., Zaman, S., & Sarwar, M. (2017). Synthesis characterization, optical and antibacterial studies of Co-doped SnO2 nanoparticles. Digest Journal of Nanomaterials and Biostructures, 12(4), 1127–1135.

    Google Scholar 

  • Roy, S., & Rhim, J.-W. (2021). Gelatin-based film integrated with copper sulfide nanoparticles for active packaging applications. Applied Sciences, 11(14), 6307.

    Article  CAS  Google Scholar 

  • Roy, S., Rhim, J.-W., & Jaiswal, L. (2019). Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocolloids, 93, 156–166.

    Article  CAS  Google Scholar 

  • Sahraee, S., Ghanbarzadeh, B., Milani, J. M., & Hamishehkar, H. (2017). Development of gelatin bionanocomposite films containing chitin and ZnO nanoparticles. Food and Bioprocess Technology, 10, 1441–1453.

    Article  CAS  Google Scholar 

  • Sathishkumar, M., & Geethalakshmi, S. (2020). Enhanced photocatalytic and antibacterial activity of Cu: SnO2 nanoparticles synthesized by microwave assisted method. Materials Today: Proceedings, 20, 54–63.

    CAS  Google Scholar 

  • Selvi, E. T., & Sundar, S. M. (2017). Effect of size on structural, optical and magnetic properties of SnO2 nanoparticles. Materials Research Express, 4(7), 075903.

    Article  Google Scholar 

  • Selvi, N., Sankar, S., & Dinakaran, K. (2014). Interfacial effect on the structural and optical properties of pure SnO2 and dual shells (ZnO; SiO2) coated SnO2 core-shell nanospheres for optoelectronic applications. Superlattices and Microstructures, 76, 277–287.

    Article  CAS  Google Scholar 

  • Shang, G., Wu, J., Huang, M., Lin, J., Lan, Z., Huang, Y., & Fan, L. (2012). Facile synthesis of mesoporous tin oxide spheres and their applications in dye-sensitized solar cells. The Journal of Physical Chemistry C, 116(38), 20140–20145.

    Article  CAS  Google Scholar 

  • Shankar, S., Jaiswal, L., Selvakannan, P., Ham, K., & Rhim, J. (2016). Gelatin-based dissolvable antibacterial films reinforced with metallic nanoparticles. RSC Advances, 6(71), 67340–67352.

    Article  CAS  Google Scholar 

  • Shankar, S., & Rhim, J.-W. (2018). Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocolloids, 82, 116–123.

    Article  CAS  Google Scholar 

  • Shankar, S., Teng, X., Li, G., & Rhim, J.-W. (2015). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45, 264–271.

    Article  CAS  Google Scholar 

  • Shankar, S., Wang, L.-F., & Rhim, J.-W. (2018). Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Materials Science and Engineering: C, 93, 289–298.

    Article  CAS  PubMed  Google Scholar 

  • Shanshool, H. M., Yahaya, M., Yunus, W. M. M., & Abdullah, I. Y. (2016). Investigation of energy band gap in polymer/ZnO nanocomposites. Journal of Materials Science: Materials in Electronics, 27, 9804–9811.

    CAS  Google Scholar 

  • Sharma, N., Jandaik, S., & Kumar, S. (2016). Synergistic activity of doped zinc oxide nanoparticles with antibiotics: Ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms. Anais Da Academia Brasileira De Ciências, 88, 1689–1698.

    Article  CAS  PubMed  Google Scholar 

  • Singh, J., Kaur, H., Kukkar, D., Mukamia, V. K., Kumar, S., & Rawat, M. (2019). Green synthesis of SnO2 NPs for solar light induced photocatalytic applications. Materials Research Express, 6(11), 115007.

    Article  CAS  Google Scholar 

  • Smith, L., & Ma, P. (2004). Nano-fibrous scaffolds for tissue engineering. Colloids and Surfaces B: Biointerfaces, 39(3), 125–131.

    Article  CAS  PubMed  Google Scholar 

  • Soltanzadeh, M., Peighambardoust, S. H., Ghanbarzadeh, B., Amjadi, S., Mohammadi, M., Lorenzo, J. M., & Hamishehkar, H. (2022). Active gelatin/cress seed gum-based films reinforced with chitosan nanoparticles encapsulating pomegranate peel extract: Preparation and characterization. Food Hydrocolloids, 129, 107620.

    Article  CAS  Google Scholar 

  • Song, H., Zhang, L., He, C., Qu, Y., Tian, Y., & Lv, Y. (2011). Graphene sheets decorated with SnO2 nanoparticles: In situ synthesis and highly efficient materials for cataluminescence gas sensors. Journal of Materials Chemistry, 21(16), 5972–5977.

    Article  CAS  Google Scholar 

  • Standard, A. (2010). ASTM Standard E96/E96M-10. Standard test methods for water vapour transmission of materials.

  • Svagan, A. J., Hedenqvist, M. S., & Berglund, L. (2009). Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Composites Science and Technology, 69(3–4), 500–506.

    Article  CAS  Google Scholar 

  • Taha, I. M., Zaghlool, A., Nasr, A., Nagib, A., El Azab, I. H., Mersal, G. A., & Fahmy, A. (2022). Impact of starch coating embedded with silver nanoparticles on strawberry storage time. Polymers, 14(7), 1439.

  • Talebian, N., & Zavvare, H. S. H. (2014). Enhanced bactericidal action of SnO2 nanostructures having different morphologies under visible light: Influence of surfactant. Journal of Photochemistry and Photobiology B: Biology, 130, 132–139.

    Article  CAS  PubMed  Google Scholar 

  • Thakur, S., Shandilya, M., & Guleria, G. (2021). Appraisement of antimicrobial zinc oxide nanoparticles through Cannabis Jatropha curcasa Alovera and Tinosporacordifolia leaves by green synthesis process. Journal of Environmental Chemical Engineering, 9(1), 104882.

    Article  CAS  Google Scholar 

  • Thakur, S., Shandilya, M., Thakur, S., & Sharma, D. K. (2020). Growth mechanism and characterization of CuO nanostructure as a potent antimicrobial agent. Surfaces and Interfaces, 20, 100551.

    Article  CAS  Google Scholar 

  • Thema, F., Beukes, P., Gurib-Fakim, A., & Maaza, M. (2015). Green synthesis of Monteponite CdO nanoparticles by Agathosma betulina natural extract. Journal of Alloys and Compounds, 646, 1043–1048.

    Article  CAS  Google Scholar 

  • Torabian, F., Akhavan Rezayat, A., Ghasemi Nour, M., Ghorbanzadeh, A., Najafi, S., Sahebkar, A., & Darroudi, M. (2022). Administration of silver nanoparticles in diabetes mellitus: A systematic review and meta-analysis on animal studies. Biological Trace Element Research, 200(4), 1699–1709.

  • Voon, H. C., Bhat, R., Easa, A. M., Liong, M., & Karim, A. (2012). Effect of addition of halloysite nanoclay and SiO 2 nanoparticles on barrier and mechanical properties of bovine gelatin films. Food and Bioprocess Technology, 5, 1766–1774.

    Article  CAS  Google Scholar 

  • Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadi, M., Mostafavi, E., Saleh, B., Davaran, S., Aliyeva, I., Khalilov, R., & Panahi, Y. (2018). Current developments in green synthesis of metallic nanoparticles using plant extracts: A review. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup3), 336–343.

  • Yang, F., Li, H., Li, F., Xin, Z., Zhao, L., Zheng, Y., & Hu, Q. (2010). Effect of nano‐packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4 C. Journal of food science, 75(3), C236-C240.

  • Yang, S., Li, H., & Sun, H. (2018). Preparation of gelatin-based films modified with nanocrystalline cellulose. Iranian Polymer Journal, 27(9), 645–652.

    Article  CAS  Google Scholar 

  • Zhang, H., Sun, Y., Tian, A., Xue, X. X., Wang, L., Alquhali, A., & Bai, X. (2013). Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: In vivo and in vitro studies. International Journal of Nanomedicine, 4379–4389.

  • Zhou, Q., Yang, L., Wang, G., & Yang, Y. (2013). Acetylcholinesterase biosensor based on SnO2 nanoparticles–carboxylic graphene–nafion modified electrode for detection of pesticides. Biosensors and Bioelectronics, 49, 25–31.

    Article  PubMed  Google Scholar 

  • Zhu, S., Zhang, D., Gu, J., Xu, J., Dong, J., & Li, J. (2010). Biotemplate fabrication of SnO 2 nanotubular materials by a sonochemical method for gas sensors. Journal of Nanoparticle Research, 12, 1389–1400.

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the Algerian Directorate General for Scientific Research and Technological Development-DGRSDT for financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Investigation, data acquisition, Co-capitalization: Hamdi Ali Mohammed, Johar Amin Ahmed Abdullah. Supervision: Laouini Salah Eddine. Co-supervision: Souhaila Meneceur. Formal analysis: Gamil Gamal Hasan, Johar Amin Ahmed Abdullah, Hamdi Ali Mohammed. Writing—original draft: Hamdi Ali Mohammed, Gamil Gamal Hasan. Writing—review and editing: Johar Amin Ahmed Abdullah. Data curation: Hamdi Ali Mohammed, Souhaila Meneceur, Gamil Gamal Hasan. Data analysis: Hamdi Ali Mohammed, Iman Kir.

Corresponding author

Correspondence to Hamdi Ali Mohammed.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, H.A., Eddine, L.S., Souhaila, M. et al. Green Synthesis of SnO2 Nanoparticles from Laurus nobilis L. Extract for Enhanced Gelatin-Based Films and CEF@SnO2 for Efficient Antibacterial Activity. Food Bioprocess Technol 17, 1364–1382 (2024). https://doi.org/10.1007/s11947-023-03209-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03209-8

Keywords

Navigation