Skip to main content

Advertisement

Log in

Preparation of gelatin-based films modified with nanocrystalline cellulose

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Gelatin is a natural biological macromolecule derived from the collagen in the connective tissue of the skin, bone and other tissues. It has been widely used in medicine, food and industrial production and other fields for easy molding, excellent compatibility and biodegradability. However, physical and chemical disadvantages impede its further application, seriously. Therefore, modification of the gelatin films becomes more and more important. In this study, the gelatin/nanocrystalline cellulose (NCC) composite films were prepared by casting method with 4% glycerol as plasticizer. The effect of NCC on the properties of the composite films was investigated by the characterization of its morphology and mechanical, thermal, and optical properties and water adsorption. The results showed that mechanical, thermal stability and water absorption properties of the gelatin/NCC composite film were obviously improved. The composite films showed the highest tensile strength (13.56 ± 0.25 MPa) when the mass concentration of NCC was 0.6%. Adding NCC to gelatin benefited the thermal stability of composite films. The gelatin/NCC composite film of 0.4% NCC had the highest melting transition temperature (138.9 °C). The composite films exhibited the lower water absorption (271.1%) when mass concentration of NCC was 1.0%. Thus, these results indicated that NCC could affect the properties of gelatin-based composite films, and showed it has potential for application in food packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Revol JF, Godbout L, Gray DG (1998) Solid films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci 24:146–149

    CAS  Google Scholar 

  2. Klemm D, Kramer F, Moritz S, Lindstrm T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  3. Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 78:547–552

    Article  CAS  Google Scholar 

  4. Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80:93–97

    Article  CAS  Google Scholar 

  5. Liu L, Fei J-M, Zhan P-F, Li Y-F, Yao J-M (2010) Pectin extraction from mulberry bark and application of pectin-derived nano-cellulose whiskers in silk fibroin composite film. Sci Seric 36:20–24

    Google Scholar 

  6. Millon LE, Wan WK (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79:245–253

    Article  CAS  PubMed  Google Scholar 

  7. Nogi M, Abe K, Handa K, Nakatsubo F, Ifuku S, Yano H (2006) Property enhancement of optically transparent bionanofiber composites by acetylation. Appl Phys Lett 89:233123(1–3)

    Article  CAS  Google Scholar 

  8. Nogi M, Ifuku S, Abe K, Handa K, Nakagaito AN, Yano H (2006) Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett 88:133124(1–3)

    Article  CAS  Google Scholar 

  9. Bochek AM, Ten’kovtsev AV, Dudkina MM, Lukoshkin VN, Matneeva GN, Sukhanova TE (2004) Nonlinear optically active nanocomposites based on cellulose. Polym Sci Ser B 46:109–112

    Google Scholar 

  10. Dujardin E, Blaseby M, Mann S (2003) Synthesis of mesoporous silica by sol–gel mineralisation of cellulose nanorod nematic suspensions. J Mater Chem 13:696–699

    Article  CAS  Google Scholar 

  11. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  CAS  PubMed  Google Scholar 

  12. Habiba U, Islam MS, Siddique TA, Afifi AM, Ang BC (2016) Adsorption and photocatalytic degradation of anionic dyes on chitosan/PVA/Na–titanate/TiO2 composites synthesized by solution casting method. Carbohydr Polym 149:317–331

    Article  CAS  PubMed  Google Scholar 

  13. Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  14. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  15. Cao X, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethanes. Biomacromolecules 8:899–904

    Article  CAS  PubMed  Google Scholar 

  16. Lima MMDS, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  CAS  Google Scholar 

  17. Sehaqui H, Zhou Q, Berglund LA (2011) Nanostructured biocomposites of high toughness-a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7:7342–7350

    Article  CAS  Google Scholar 

  18. Barreto PLM, Pires ATN, Soldi V (2003) Thermal degradation of edible films based on milk proteins and gelatin in inert atmosphere. Polym Degrad Stab 79:147–152

    Article  CAS  Google Scholar 

  19. Wang W, Zhang Y, Ye R, Ni Y (2015) Physical crosslinkings of edible collagen casing. Int J Biol Macromol 81:920–925

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the Natural Science Foundation of Qinghai Province, China, Grant No. 2015-ZJ-909.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haichao Li or Huizhen Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Li, H. & Sun, H. Preparation of gelatin-based films modified with nanocrystalline cellulose. Iran Polym J 27, 645–652 (2018). https://doi.org/10.1007/s13726-018-0641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0641-6

Keywords

Navigation