Skip to main content

Advertisement

Log in

Development of Antimicrobial Active Food Packaging Film Based on Gelatin/Dialdehyde Quince Seed Gum Incorporated with Apple Peel Polyphenols

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Gelatin films crosslinked with dialdehyde quince seed gum (Gel/DAQSG) were prepared with different blending ratios by solution casting technique. The morphological, structural, thermal, and physical properties of these films were investigated. The addition of DAQSG into the matrix of Gel films led to the chemical crosslinking between the amine groups of Gel, and aldehyde groups of DAQSG. Also, with the increase of DAQSG content, the number of crosslinked networks increased, causing the structure of Gel/DAQSG films became denser and compact. Compared with pure Gel film, Gel/DAQSG film with ratio of 1:2 as the optimal sample exhibited lower water solubility (18.14 ± 0.3%), lower water vapor permeability (2.6 ± 0.2 g mm/h mm2 Pa), and higher tensile stress (59.5 ± 0.4 MPa). Moreover, the optimal film containing apple peel extract (APE with concentrations of 0.5 and 1 wt%) displayed high antioxidant activity with DPPH scavenging ability, which is 20 and 30 times higher than control film. Also, the antibacterial activities against E. coli and S. areus were significantly (p < 0.05) improved. Collectively, Gel/DAQSG with ratio of 1:2 containing APE films illustrated the acceptable potential for using as an active food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Akrami, M., Tayebi, L., & Ghorbani, M. (2020). Curcumin-loaded naturally-based nanofibers as active wound dressing mats: Morphology, drug release, cell proliferation and cell adhesion studies. New Journal of Chemistry. https://doi.org/10.1039/d0nj01594f

    Article  Google Scholar 

  • Akrami-Hasan-Kohal, M., Ghorbani, M., Mahmoodzadeh, F., & Nikzad, B. (2020). Development of reinforced aldehyde-modified kappa-carrageenan/gelatin film by incorporation of halloysite nanotubes for biomedical applications. International Journal of Biological Macromolecules.

  • Alipoorfard, F., & Jouki, M. (2020). Application of sodium chloride and quince seed gum pretreatments to prevent enzymatic browning, loss of texture and antioxidant activity of freeze dried pear slices. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-020-04265-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Amjadi, S., Almasi, H., Ghorbani, M., & Ramazani, S. (2020a). Reinforced ZnONPs/ rosemary essential oil-incorporated zein electrospun nanofibers by κ-carrageenan. Carbohydrate Polymers, 232(December 2019), 115800. https://doi.org/10.1016/j.carbpol.2019.115800

  • Amjadi, S., Almasi, H., Ghorbani, M., & Ramazani, S. (2020b). Preparation and characterization of TiO2NPs and betanin loaded zein/sodium alginate nanofibers. Food Packaging and Shelf Life, 24, 100504.

  • Amjadi, S., Emaminia, S., Nazari, M., Davudian, S. H., Roufegarinejad, L., & Hamishehkar, H. (2019). Application of reinforced ZnO nanoparticle-incorporated gelatin bionanocomposite film with chitosan nanofiber for packaging of chicken fillet and cheese as food models. Food and Bioprocess Technology, 12(7), 1205–1219. https://doi.org/10.1007/s11947-019-02286-y

    Article  CAS  Google Scholar 

  • Amjadi, S., Mesgari Abbasi, M., Shokouhi, B., Ghorbani, M., & Hamishehkar, H. (2019). Enhancement of therapeutic efficacy of betanin for diabetes treatment by liposomal nanocarriers. Journal of Functional Foods, 59(May), 119–128. https://doi.org/10.1016/j.jff.2019.05.015

    Article  CAS  Google Scholar 

  • Araújo, J. M. S., de Siqueira, A. C. P., Blank, A. F., Narain, N., & de Aquino Santana, L. C. L. (2018). A cassava starch–chitosan edible coating enriched with Lippia sidoides Cham. essential oil and pomegranate peel extract for preservation of Italian tomatoes (Lycopersicon esculentum Mill.) stored at room temperature. Food and Bioprocess Technology, 11(9), 1750–1760. https://doi.org/10.1007/s11947-018-2139-9

  • Azeredo, H. M. C., & Waldron, K. W. (2016). Crosslinking in polysaccharide and protein films and coatings for food contact - A review. Trends in Food Science and Technology, 52, 109–122. https://doi.org/10.1016/j.tifs.2016.04.008

    Article  CAS  Google Scholar 

  • Balasuriya, N., & Rupasinghe, H. P. V. (2012). Antihypertensive properties of flavonoid-rich apple peel extract. Food Chemistry, 135(4), 2320–2325. https://doi.org/10.1016/j.foodchem.2012.07.023

    Article  CAS  PubMed  Google Scholar 

  • Bi, X., Zhang, J., Chen, C., Zhang, D., Li, P., & Ma, F. (2014). Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel. Food Chemistry, 152, 205–209. https://doi.org/10.1016/j.foodchem.2013.11.088

    Article  CAS  PubMed  Google Scholar 

  • Bigi, A., Cojazzi, G., Panzavolta, S., Roveri, N., & Rubini, K. (2003). Stabilization of gelatin film by crossling with genipin, 9612(January). https://doi.org/10.1016/S0142-9612(02)00235-1

  • Boanini, E., Rubini, K., Panzavolta, S., & Bigi, A. (2010). Chemico-physical characterization of gelatin films modified with oxidized alginate. Acta Biomaterialia, 6(2), 383–388. https://doi.org/10.1016/j.actbio.2009.06.015

    Article  CAS  PubMed  Google Scholar 

  • Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, 4(6), 849–875. https://doi.org/10.1007/s11947-010-0434-1

    Article  CAS  Google Scholar 

  • Cao, N., Fu, Y., & He, J. (2007). Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids, 21(4), 575–584. https://doi.org/10.1016/j.foodhyd.2006.07.001

    Article  CAS  Google Scholar 

  • De Carvalho, R. A., & Grosso, C. R. F. (2004). Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids, 18(5), 717–726. https://doi.org/10.1016/j.foodhyd.2003.10.005

    Article  CAS  Google Scholar 

  • de Moraes Crizel, T., de Oliveira Rios, A., Alves, V. D., Bandarra, N., Moldão-Martins, M., & Hickmann Flôres, S. (2018). Biodegradable films based on gelatin and papaya peel microparticles with antioxidant properties. Food and Bioprocess Technology, 11(3), 536–550. https://doi.org/10.1007/s11947-017-2030-0

    Article  CAS  Google Scholar 

  • Ding, W., & Wu, Y. (2020). Sustainable dialdehyde polysaccharides as versatile building blocks for fabricating functional materials: An overview. Carbohydrate Polymers, 248(May), 116801. https://doi.org/10.1016/j.carbpol.2020.116801

    Article  CAS  PubMed  Google Scholar 

  • Fakhreddin, S., & Gómez-guillén, M. C. (2018). A state-of-the-art review on the elaboration of fi sh gelatin as bioactive packaging: special emphasis on nanotechnology-based approaches. Trends in Food Science & Technology, 79, 125–135. https://doi.org/10.1016/j.tifs.2018.07.022

  • Farahmandfar, R., Mohseni, M., & Asnaashari, M. (2017). Effects of quince seed, almond, and tragacanth gum coating on the banana slices properties during the process of hot air drying. Food Science and Nutrition, 5(6), 1057–1064. https://doi.org/10.1002/fsn3.489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farshi, P., Tabibiazar, M., Ghorbani, M., & Hamishehkar, H. (2017). Evaluation of antioxidant activity and cytotoxicity of cumin seed oil nanoemulsion stabilized by sodium caseinate-guar gum. Tabriz University of Medical Sciences, 23(4), 293–300. https://doi.org/10.15171/PS.2017.43

  • Farshi, P., Tabibiazar, M., Ghorbani, M., Mohammadifar, M., Amirkhiz, M. B., & Hamishehkar, H. (2019). Whey protein isolate-guar gum stabilized cumin seed oil nanoemulsion. Food Bioscience, 28, 49–56.

    Article  CAS  Google Scholar 

  • Ge, L., Zhu, M., Xu, Y., Li, X., Li, D., & Mu, C. (2017). Development of antimicrobial and controlled biodegradable gelatin-based edible films containing nisin and amino-functionalized montmorillonite. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-017-1941-0

    Article  Google Scholar 

  • Ghorbani, M., Hamishehkar, H., Arsalani, N., & Entezami, A. A. (2016a). Surface decoration of magnetic nanoparticles with folate-conjugated poly(N-isopropylacrylamide-co-itaconic acid): A facial synthesis of dual-responsive nanocarrier for targeted delivery of doxorubicin. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(13), 683–694. https://doi.org/10.1080/00914037.2016.1157800

    Article  CAS  Google Scholar 

  • Ghorbani, M., Hamishehkar, H., Hajipour, H., Arsalani, N., & Entezami, A. A. (2016b). Ternary-responsive magnetic nanocarriers for targeted delivery of thiol-containing anticancer drugs. New Journal of Chemistry, 40(4), 3561–3570. https://doi.org/10.1039/C5NJ03602J

    Article  CAS  Google Scholar 

  • Ghorbani, M., Hamishehkar, H., Tabibiazar, M. (2018) BSA/chitosan polyelectrolyte complex: A platform for enhancing the loading and cancer cell-uptake of resveratrol. Macromolecular Research, 1–6. https://doi.org/10.1007/s13233-018-6112-2

  • Ghorbani, M., & Roshangar, L. (2019). Construction of collagen/nanocrystalline cellulose based-hydrogel scaffolds: synthesis, characterization, and mechanical properties evaluation. International Journal of Polymeric Materials and Polymeric Biomaterials, 1–7.

  • Ghorbani, M., Roshangar, L., & Rad, J. S. (2020). Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering. European Polymer Journal, 130, 109697.

  • Guo, J., Ge, L., Li, X., Mu, C., & Li, D. (2014). Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocolloids, 39, 243–250.

    Article  CAS  Google Scholar 

  • Henríquez, C., Almonacid, S., Chiffelle, I., Valenzuela, T., Araya, M., Cabezas, L., et al. (2010). Determinación de la capacidad antioxidante, contenido de fenoles totales y composición mineral de diferentes tejidos de frutos de cinco variedades de manzana cultivadas en Chile. Chilean Journal of Agricultural Research, 70(4), 523–536. https://doi.org/10.4067/S0718-58392010000400001

    Article  Google Scholar 

  • Jouki, M., Mortazavi, S. A., Yazdi, F. T., & Koocheki, A. (2013). Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2013.08.077

    Article  PubMed  Google Scholar 

  • Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2013). International Journal of Biological Macromolecules Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. International Journal of Biological Macromolecules, 62, 500–507. https://doi.org/10.1016/j.ijbiomac.2013.09.031

    Article  CAS  PubMed  Google Scholar 

  • Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Food hydrocolloids quince seed mucilage films incorporated with oregano essential oil : Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9–19. https://doi.org/10.1016/j.foodhyd.2013.08.030

    Article  CAS  Google Scholar 

  • Kalinowska, M., Gryko, K., Wróblewska, A. M., Jabłońska-Trypuć, A., & Karpowicz, D. (2020). Phenolic content, chemical composition and anti-/pro-oxidant activity of Gold Milenium and Papierowka apple peel extracts. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-71351-w

    Article  Google Scholar 

  • Kayaci, F., & Uyar, T. (2012). Electrospun zein nanofibers incorporating cyclodextrins. Carbohydrate Polymers, 90(1), 558–568. https://doi.org/10.1016/j.carbpol.2012.05.078

    Article  CAS  PubMed  Google Scholar 

  • Khodaei, D., Oltrogge, K., & Hamidi-Esfahani, Z. (2020). Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and Persian gum. LWT, 117, 108617. https://doi.org/10.1016/j.lwt.2019.108617

    Article  CAS  Google Scholar 

  • Kirtil, E., & Oztop, M. H. (2016). Characterization of emulsion stabilization properties of quince seed extract as a new source of hydrocolloid. FRIN, 85, 84–94. https://doi.org/10.1016/j.foodres.2016.04.019

    Article  CAS  Google Scholar 

  • Kwak, H. W., Lee, H., Park, S., Lee, M. E., & Jin, H. J. (2020). Chemical and physical reinforcement of hydrophilic gelatin film with di-aldehyde nanocellulose. International Journal of Biological Macromolecules, 146, 332–342. https://doi.org/10.1016/j.ijbiomac.2019.12.254

    Article  CAS  PubMed  Google Scholar 

  • Lee, H., You, J., Jin, H. J., & Kwak, H. W. (2020). Chemical and physical reinforcement behavior of dialdehyde nanocellulose in PVA composite film: A comparison of nanofiber and nanocrystal. Carbohydrate Polymers, 232, 115771. https://doi.org/10.1016/j.carbpol.2019.115771

    Article  CAS  PubMed  Google Scholar 

  • Leite, L. S. F., Moreira, F. K. V., Mattoso, L. H. C., & Bras, J. (2021). Electrostatic interactions regulate the physical properties of gelatin-cellulose nanocrystals nanocomposite films intended for biodegradable packaging. Food Hydrocolloids, 113(October), 106424. https://doi.org/10.1016/j.foodhyd.2020.106424

    Article  CAS  Google Scholar 

  • Lin, L., Regenstein, J. M., Lv, S., Lu, J., & Jiang, S. (2017). An overview of gelatin derived from aquatic animals: Properties and modification. Trends in Food Science and Technology, 68, 102–112. https://doi.org/10.1016/j.tifs.2017.08.012

    Article  CAS  Google Scholar 

  • Linhares, L., Menezes, R., Pires, R., Leila, P., Freitas, M. De, Warlene, B., et al. (2019). Effect of tannic acid as crosslinking agent on fish skin gelatin-silver nanocomposite film. Food Packaging and Shelf Life, 19(November 2018), 7–15. https://doi.org/10.1016/j.fpsl.2018.11.005

  • Liu, J., Zhang, L., Liu, C., Zheng, X., & Tang, K. (2021). Tuning structure and properties of gelatin edible films through pullulan dialdehyde crosslinking. LWT, 138, 110607. https://doi.org/10.1016/j.lwt.2020.110607

    Article  CAS  Google Scholar 

  • López-Hortas, L., Conde, E., Falqué, E., Domínguez, H., & Torres, M. D. (2019). Recovery of aqueous phase of broccoli obtained by MHG technique for development of hydrogels with antioxidant properties. LWT, 107(November 2018), 98–106. https://doi.org/10.1016/j.lwt.2019.02.081

  • Ma, W., Tang, C., Yin, S., Yang, X., & Qi, J. (2013). Genipin-crosslinked gelatin fi lms as controlled releasing carriers of lysozyme. FRIN, 51(1), 321–324. https://doi.org/10.1016/j.foodres.2012.12.039

    Article  CAS  Google Scholar 

  • Maroufi, N. F., Vahedian, V., Mazrakhondi, S. A. M., Kooti, W., Khiavy, H. A., Bazzaz, R., et al. (2020). Sensitization of MDA-MBA231 breast cancer cell to docetaxel by myricetin loaded into biocompatible lipid nanoparticles via sub-G1 cell cycle arrest mechanism. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393(1), 1–11.

    Article  CAS  Google Scholar 

  • Martucci, J. F., Accareddu, A. E. M., & Ruseckaite, R. A. (2012). Preparation and characterization of plasticized gelatin films cross-linked with low concentrations of Glutaraldehyde. Journal of Materials Science, 47(7), 3282–3292. https://doi.org/10.1007/s10853-011-6167-3

    Article  CAS  Google Scholar 

  • Mir, S. A., Shah, M. A., Dar, B. N., Wani, A. A., Ganai, S. A., & Nishad, J. (2017). Supercritical impregnation of active components into polymers for food packaging applications, 1749–1754. https://doi.org/10.1007/s11947-017-1937-9

  • Moreno, M. A., Orqueda, M. E., Gómez-Mascaraque, L. G., Isla, M. I., & López-Rubio, A. (2019). Crosslinked electrospun zein-based food packaging coatings containing bioactive chilto fruit extracts. Food Hydrocolloids, 95, 496–505. https://doi.org/10.1016/j.foodhyd.2019.05.001

    Article  CAS  Google Scholar 

  • Mousavi Khaneghah, A., Hashemi, S. M. B., & Limbo, S. (2018). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1–19. https://doi.org/10.1016/j.fbp.2018.05.001

    Article  CAS  Google Scholar 

  • Mu, C., Guo, J., Li, X., Lin, W., & Li, D. (2012). Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids, 27(1), 22–29. https://doi.org/10.1016/j.foodhyd.2011.09.005

    Article  CAS  Google Scholar 

  • Nezhad-Mokhtari, P., Akrami-Hasan-Kohal, M., & Ghorbani, M. (2020). An injectable chitosan-based hydrogel scaffold containing gold nanoparticles for tissue engineering applications. International Journal of Biological Macromolecules, 154, 198–205. https://doi.org/10.1016/j.ijbiomac.2020.03.112

    Article  CAS  PubMed  Google Scholar 

  • Ngamakeue, N., & Chitpraser, P. (2016). Encapsulation of holy basil essential oil in gelatin: effects of palmitic acid in carboxymethyl cellulose emulsion coating on antioxidant and antimicrobial activities. Food and Bioprocess Technology, 1735–1745. https://doi.org/10.1007/s11947-016-1756-4

  • Nur Hanani, Z. A., Aelma Husna, A. B., Nurul Syahida, S., Nor Khaizura, M. A. B., & Jamilah, B. (2018). Effect of different fruit peels on the functional properties of gelatin/polyethylene bilayer films for active packaging. Food Packaging and Shelf Life, 18(November), 201–211. https://doi.org/10.1016/j.fpsl.2018.11.004

    Article  Google Scholar 

  • Orsuwan, A., & Sothornvit, R. (2018). Active banana flour nanocomposite films incorporated with garlic essential oil as multifunctional packaging material for food application. Food and Bioprocess Technology, 11(6), 1199–1210. https://doi.org/10.1007/s11947-018-2089-2

    Article  CAS  Google Scholar 

  • Park, J., Nam, J., Yun, H., Jin, H. J., & Kwak, H. W. (2021). Aquatic polymer-based edible films of fish gelatin crosslinked with alginate dialdehyde having enhanced physicochemical properties. Carbohydrate Polymers, 254, 117317. https://doi.org/10.1016/j.carbpol.2020.117317

    Article  CAS  PubMed  Google Scholar 

  • Ramazani, S., Rostami, M., Raeisi, M., Tabibiazar, M., & Ghorbani, M. (2019). Fabrication of food-grade nanofibers of whey protein Isolate-Guar gum using the electrospinning method. Food Hydrocolloids, 90, 99–104.

    Article  Google Scholar 

  • Rath, G., Hussain, T., Chauhan, G., Garg, T., & Goyal, A. K. (2016). Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds. Materials Science and Engineering C, 58, 242–253. https://doi.org/10.1016/j.msec.2015.08.050

    Article  CAS  PubMed  Google Scholar 

  • Riaz, A., Lagnika, C., Abdin, M., Hashim, M. M., & Ahmed, W. (2020). Preparation and Characterization of Chitosan/Gelatin-Based Active Food Packaging Films Containing Apple Peel Nanoparticles. Journal of Polymers and the Environment, 28(2), 411–420. https://doi.org/10.1007/s10924-019-01619-4

    Article  CAS  Google Scholar 

  • Riaz, A., Lei, S., Akhtar, H. M. S., Wan, P., Chen, D., Jabbar, S., et al. (2018). Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. International Journal of Biological Macromolecules, 114, 547–555. https://doi.org/10.1016/j.ijbiomac.2018.03.126

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Bravo, M., Rojas-Zenteno, E. G., Hernández-Carranza, P., Ávila-Sosa, R., Aguilar-Sánchez, R., Ruiz-López, I. I., & Ochoa-Velasco, C. E. (2019). A potential application of mango (Mangifera indica L. cv Manila) peel powder to increase the total phenolic compounds and antioxidant capacity of edible films and coatings. Food and Bioprocess Technology, 12(9), 1584–1592. https://doi.org/10.1007/s11947-019-02317-8

  • Rostami, M., Ghorbani, M., Delavar, M., Tabibiazar, M., & Ramezani, S. (2019). Development of resveratrol loaded chitosan-gellan nanofiber as a novel gastrointestinal delivery system. International Journal of Biological Macromolecules, 135, 698–705.

    Article  CAS  Google Scholar 

  • Scopel, B. S., Pretto, G. L., Corrêa, J. I. P., Baldasso, C., Dettmer, A., & Santana, R. M. C. (2020). Starch-leather waste gelatin films cross-linked with glutaraldehyde. Journal of Polymers and the Environment, 28(7), 1974–1984. https://doi.org/10.1007/s10924-020-01736-5

    Article  CAS  Google Scholar 

  • Sekhon-Loodu, S., Warnakulasuriya, S. N., Rupasinghe, H. P. V., & Shahidi, F. (2013). Antioxidant ability of fractionated apple peel phenolics to inhibit fish oil oxidation. Food Chemistry, 140(1–2), 189–196. https://doi.org/10.1016/j.foodchem.2013.02.040

    Article  CAS  PubMed  Google Scholar 

  • Shankar, S., Wang, L. F., & Rhim, J. W. (2019). Effect of melanin nanoparticles on the mechanical, water vapor barrier, and antioxidant properties of gelatin-based films for food packaging application. Food Packaging and Shelf Life, 21(January), 100363. https://doi.org/10.1016/j.fpsl.2019.100363

    Article  Google Scholar 

  • Shi, C., Tao, F., & Cui, Y. (2018). New starch ester/gelatin based films: Developed and physicochemical characterization. International Journal of Biological Macromolecules, 109, 863–871. https://doi.org/10.1016/j.ijbiomac.2017.11.073

    Article  CAS  PubMed  Google Scholar 

  • Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active fi lm from chitosan incorporated with green tea extract. Food Hydrocolloids, 24(8), 770–775. https://doi.org/10.1016/j.foodhyd.2010.04.003

    Article  CAS  Google Scholar 

  • Wang, L., Lin, L., Guo, Y., Long, J., Mu, R.-J., & Pang, J. (2020). Enhanced functional properties of nanocomposite film incorporated with EGCG-loaded dialdehyde glucomannan/gelatin matrix for food packaging. Food Hydrocolloids, 108(February), 105863. https://doi.org/10.1016/j.foodhyd.2020.105863

    Article  CAS  Google Scholar 

  • Wang, Y., Xia, Y., Zhang, P., Ye, L., Wu, L., & He, S. (2017). Physical characterization and pork packaging application of chitosan films incorporated with combined essential oils of cinnamon and ginger, 503–511. https://doi.org/10.1007/s11947-016-1833-8

  • Wu, J., Sun, X., Guo, X., Ji, M., Wang, J., Cheng, C., et al. (2018). Physicochemical, antioxidant, in vitro release, and heat sealing properties of fish gelatin films incorporated with β-cyclodextrin/curcumin complexes for apple juice preservation. Food and Bioprocess Technology, 11(2), 447–461. https://doi.org/10.1007/s11947-017-2021-1

    Article  CAS  Google Scholar 

  • Xu, J. L., Thomas, K. V., Luo, Z., & Gowen, A. A. (2019). FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. TrAC - Trends in Analytical Chemistry, 119, 115629. https://doi.org/10.1016/j.trac.2019.115629

    Article  CAS  Google Scholar 

  • Yavari, L., & Ghorbani, M. (2021a). Injectable chitosan-quince seed gum hydrogels encapsulated with curcumin loaded-halloysite nanotubes designed for tissue engineering application. International Journal of Biological Macromolecules, 177, 485–494. https://doi.org/10.1016/j.ijbiomac.2021.02.113

    Article  CAS  Google Scholar 

  • Yavari, L., Ghorbani, M., Tabibiazar, M., Mohammadi, M., & Pezeshki, A. (2021b). Advanced properties of gelatin fi lm by incorporating modi fi ed kappa-carrageenan and zein nanoparticles for active food packaging. International Journal of Biological Macromolecules, 183, 753–759. https://doi.org/10.1016/j.ijbiomac.2021.04.163

  • Yavari, L., Tabibiazar, M., Ghorbani, M., & Jahanban-esfahlan, A. (2021c). Fabrication and characterization of novel antibacterial chitosan / dialdehyde guar gum hydrogels containing pomegranate peel extract for active food packaging application. International Journal of Biological Macromolecules, 187(July), 179–188. https://doi.org/10.1016/j.ijbiomac.2021.07.126

    Article  CAS  Google Scholar 

  • Yavari Maroufi, L., Ghorbani, M., & Tabibiazar, M. (2020). A gelatin-based film reinforced by covalent interaction with oxidized guar gum containing green tea extract as an active food packaging system. Food and Bioprocess Technology, 13(9), 1633–1644. https://doi.org/10.1007/s11947-020-02509-7

    Article  CAS  Google Scholar 

  • Zhang, W., Li, X., & Jiang, W. (2020). Development of antioxidant chitosan film with banana peels extract and its application as coating in maintaining the storage quality of apple. International Journal of Biological Macromolecules, 154, 1205–1214. https://doi.org/10.1016/j.ijbiomac.2019.10.275

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Nutrition Research Center; Tabriz University of Medical Sciences (grant number: 67788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Ghorbani.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maroufi, L.Y., Shahabi, N., Ghanbarzadeh, M. et al. Development of Antimicrobial Active Food Packaging Film Based on Gelatin/Dialdehyde Quince Seed Gum Incorporated with Apple Peel Polyphenols. Food Bioprocess Technol 15, 693–705 (2022). https://doi.org/10.1007/s11947-022-02774-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02774-8

Keywords

Navigation