Skip to main content
Log in

Magnetite (Fe3O4)-filled carbon nanofibers as electro-conducting/superparamagnetic nanohybrids and their multifunctional polymer composites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A mild-temperature, nonchemical technique is used to produce a nanohybrid multifunctional (electro-conducting and magnetic) powder material by intercalating iron oxide nanoparticles in large aspect ratio, open-ended, hollow-core carbon nanofibers (CNFs). Single-crystal, superparamagnetic Fe3O4 nanoparticles (10 nm average diameter) filled the CNF internal cavity (diameter <100 nm) after successive steps starting with dispersion of CNFs and magnetite nanoparticles in aqueous or organic solvents, sequencing or combining sonication-assisted capillary imbibition and concentration-driven diffusion, and finally drying at mild temperatures. The influence of several process parameters—such as sonication type and duration, concentration of solids dispersed in solvent, CNF-to-nanoparticle mass ratio, and drying temperature—on intercalation efficiency (evaluated in terms of particle packing in the CNF cavity) was studied using electron microscopy. The magnetic CNF powder was used as a low-concentration filler in poly(methyl methacrylate) to demonstrate thin free-standing polymer films with simultaneous magnetic and electro-conducting properties. Such films could be implemented in sensors, optoelectromagnetic devices, or electromagnetic interference shields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ajayan PM, Iijima S (1993) Capillarity-induced filling of carbon nanotubes. Nature 361:333–334

    Article  Google Scholar 

  • Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47:2–22

    Article  Google Scholar 

  • Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320

    Article  Google Scholar 

  • Bazilevsky AV, Sun K, Yarin AL, Megaridis CM (2007) Selective intercalation of polymers in carbon nanotubes. Langmuir 23:7451–7455

    Article  Google Scholar 

  • Bazilevsky AV, Sun K, Yarin AL, Megaridis CM (2008) Room-temperature, open-air, wet intercalation of liquids, surfactants, polymers and nanoparticles within nanotubes and microchannels. J Mater Chem 18:696–702

    Article  Google Scholar 

  • Brune H, Ernst H, Grunwald A, Grünwald W (2006) Nanotechnology: assessment and perspectives. Eth Sci Technol Assess vol 27, Springer, Berlin Heidelberg

  • Castillejos E, Debouttière P-J, Roiban L et al (2009) An efficient strategy to drive nanoparticles into carbon nanotubes and the remarkable effect of confinement on their catalytic performance. Angew Chem Int Ed Engl 48:2529–2533

    Article  Google Scholar 

  • Chamberlain TW, Popov AM, Knizhnik AA et al (2010) The role of molecular clusters in the filling of carbon nanotubes. ACS Nano 4:5203–5210

    Article  Google Scholar 

  • Charlier J, Lambin P, Ebbesen T (1996) Electronic properties of carbon nanotubes with polygonized cross sections. Phys Rev B 54:R8377–R8380

    Article  Google Scholar 

  • Cheng H, Qiu H, Zhu Z et al (2012) Investigation of the electrochemical behavior of dopamine at electrodes modified with ferrocene-filled double-walled carbon nanotubes. Electrochim Acta 63:83–88

    Article  Google Scholar 

  • Chou SY, Wei MS, Krauss PR, Fischer PB (1994) Single-domain magnetic pillar array of 35 nm diameter and 65 Gbits/in. 2 density for ultrahigh density quantum magnetic storage. J Appl Phys 76:6673–6675

    Article  Google Scholar 

  • Chu A, Cook J, Heesom RJR et al (1996) Filling of carbon nanotubes with silver, gold, and gold chloride. Chem Mater 8:2751–2754

    Article  Google Scholar 

  • Costa PMFJ, Coleman KS, Green MLH (2005) Influence of catalyst metal particles on the hydrogen sorption of single-walled carbon nanotube materials. Nanotechnology 16:512–517

    Article  Google Scholar 

  • Dai H, Kong J, Zhou C et al (1999) Controlled chemical routes to nanotube architectures, physics, and devices. J Phys Chem B 103:11246–11255

    Article  Google Scholar 

  • Day TM, Unwin PR, Wilson NR, Macpherson JV (2005) Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks. J Am Chem Soc 127:10639–106447

    Article  Google Scholar 

  • Day TM, Unwin PR, Macpherson JV (2007) Factors controlling the electrodeposition of metal nanoparticles on pristine single walled carbon nanotubes. Nano Lett 7:51–57

    Article  Google Scholar 

  • Demoncy N, St O, Brun N et al (1998) Filling carbon nanotubes with metals by the arc-discharge method: the key role of sulfur. Eur Phys J B 4:147–157

    Article  Google Scholar 

  • Dong X, Fu D, Ahmed MO et al (2007) Heme-enabled electrical detection of carbon monoxide at room temperature using networked carbon nanotube field-effect transistors. Chem Mater 19:6059–6061

    Article  Google Scholar 

  • Dong X, Lau CM, Lohani A et al (2008) Electrical detection of femtomolar DNA via gold-nanoparticle enhancement in carbon-nanotube-network field-effect transistors. Adv Mater 20:2389–2393

    Article  Google Scholar 

  • Dresselhaus M., Dresselhaus G., Avouris P. (2001) Carbon Nanotubes: Synthesis, Properties and Applications. Top Appl Phys, vol 80. Springer, Berlin

  • Ebbesen W (1996) Wetting, filling and decorating. J Phys Chem Solids 57:951–955

    Article  Google Scholar 

  • Erb RM, Libanori R, Rothfuchs N, Studart AR (2012) Composites reinforced in three dimensions by using low magnetic fields. Science 335:199–204

    Article  Google Scholar 

  • Fragouli D, Buonsanti R, Bertoni G et al (2010) Dynamical formation of spatially localized arrays of aligned nanowires anisotropy. ACS Nano 4:1873–1878

    Article  Google Scholar 

  • Fragouli D, Das A, Innocenti C, Guttigonta Y, Rahman S, Liu L, Caramia V, Megaridis CM, Athanassiou A (2014) Polymeric films with electric and magnetic anisotropy due to magnetically assembled functional nanofibers. ACS Appl Mater Interfaces 6:4535–4541

    Article  Google Scholar 

  • Gautam UK, Costa PMFJ, Bando Y et al (2010) Recent developments in inorganically filled carbon nanotubes: successes and challenges. Sci Technol Adv Mater 11:054501

    Article  Google Scholar 

  • Goldstein AN, Echer CM, Alivisatos AP (1992) Melting in semiconductor nanocrystals. Science 256:1425–1427. doi:10.1126/science.256.5062.1425

    Article  Google Scholar 

  • Guan L, Shi Z, Li M, Gu Z (2005) Ferrocene-filled single-walled carbon nanotubes. Carbon 43:2780–2785

    Article  Google Scholar 

  • Guerretpiecourt C, Le bouar Y, Loiseau A, Pascard H (1994) Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 372:761–765

    Article  Google Scholar 

  • Kornev KG, Halverson D, Korneva G et al (2008) Magnetostatic interactions between carbon nanotubes filled with magnetic nanoparticles. Appl Phys Lett 92:233117

    Article  Google Scholar 

  • Korneva G, Ye H, Gogotsi Y et al (2005) Carbon nanotubes loaded with magnetic particles. Nano Lett 5:879–884

    Article  Google Scholar 

  • Kuzmany H, Fink J, Mehring M, Roth S (2001) Nanotube. Electronic properties of molecular nanostructures. AIP-Press, Springer, New York, pp 562–567

    Google Scholar 

  • La Torre A, Rance GA, El Harfi J et al (2010) Transport and encapsulation of gold nanoparticles in carbon nanotubes. Nanoscale 2:1006–1010

    Article  Google Scholar 

  • La Torre A, Fay MW, Rance GA et al (2012) Interactions of gold nanoparticles with the interior of hollow graphitized carbon nanofibers. Small 8:1222–1228

    Article  Google Scholar 

  • Lee J, Park J, Kim J, Yi W (2008) Efficient visible photoluminescence from encapsulation of fluorescent materials inside single-walled carbon nanotubes. Colloids Surf A 313–314:296–299

    Article  Google Scholar 

  • Li L-J, Khlobystov AN, Wiltshire JG et al (2005) Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nat Mater 4:481–485

    Article  Google Scholar 

  • Liu C, Fan YY, Liu M et al (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286:1127–1129

    Article  Google Scholar 

  • Luo J, Mark LP, Giannakopulos AE et al (2011) Field ionization using densely spaced arrays of nickel-tipped carbon nanotubes. Chem Phys Lett 505:126–129

    Article  Google Scholar 

  • Misewich JA, Martel R, Avouris P, Tsang JC, Heinze S, Tersoff J (2003) Electrically induced optical emission from a carbon nanotube FET. Science 300:783–786

    Article  Google Scholar 

  • Mönch I, Meye A, Leonhardt A et al (2005) Ferromagnetic filled carbon nanotubes and nanoparticles: synthesis and lipid-mediated delivery into human tumor cells. J Magn Magn Mater 290–291:276–278

    Article  Google Scholar 

  • Okazaki T, Suenaga K, Hirahara K et al (2001) Communications to the editor. J Am Chem Soc 123:9673–9674

    Article  Google Scholar 

  • Palaniselvam T, Kannan R, Kurungot S (2011) Facile construction of non-precious iron nitride-doped carbon nanofibers as cathode electrocatalysts for proton exchange membrane fuel cells. Chem Commun 47:2910–2912

    Article  Google Scholar 

  • Pan X, Bao X (2008) Reactions over catalysts confined in carbon nanotubes. Chem Commun (Camb) 47:6271–6281

    Article  Google Scholar 

  • Pati SP, Bhushan B, Das D (2010) Exchange interaction at the interface of Fe–NiO nanocomposites. J Solid State Chem 183:2903–2909

    Article  Google Scholar 

  • Pati SP, Kumar S, Das D (2012) Memory effects in exchange coupled Fe/Co3O4 nanocomposites. Mater Chem Phys 137:303–309

    Article  Google Scholar 

  • Qiu H, Shi Z, Zhang S et al (2006) Synthesis and Raman scattering study of double-walled carbon nanotube peapods. Solid State Commun 137:654–657

    Article  Google Scholar 

  • Sinha-Ray S, Sahu RP, Yarin AL (2011) Nano-encapsulated smart tunable phase change materials. Soft Matter 7:8823–8827

    Article  Google Scholar 

  • Sloan J, Wright DM, Woo H-G et al (1999) Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem Commun 8:699–700

    Article  Google Scholar 

  • Smith BW, Monthioux M, Luzzi DE (1998) Encapsulated C60 in carbon nanotubes. Nature 396:323–324

    Article  Google Scholar 

  • Smith BW, Monthioux M, Luzzi DE (1999) Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials. Chem Phys Lett 315:31–36

    Article  Google Scholar 

  • Sutradhar S, Mukhopadhyay K, Pati S, Das S, Das D, Chakrabarti PK (2013) Modulated magnetic property, enhanced microwave absorption and Mössbauer spectroscopy of Ni0.40Zn0.40Cu0.20Fe2O4 nanoparticles embedded in carbon nanotubes. J Alloys Compd 576:126–133

    Article  Google Scholar 

  • Takenobu T, Takano T, Shiraishi M et al (2003) Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat Mater 2:683–688

    Article  Google Scholar 

  • Tessonnier J-P, Ersen O, Weinberg G et al (2009a) Selective deposition of metal nanoparticles inside or outside multiwalled carbon nanotubes. ACS Nano 3:2081–2089

    Article  Google Scholar 

  • Tessonnier J-P, Rosenthal D, Girgsdies F, Amadou J et al (2009b) Influence of the graphitisation of hollow carbon nanofibers on their functionalisation and subsequent filling with metal nanoparticles. Chem Commun 46:7158–7160

    Article  Google Scholar 

  • Tîlmaciu CM, Soula B, Galibert A-M et al (2009) Synthesis of superparamagnetic iron(III) oxide nanowires in double-walled carbon nanotubes. Chem Commun 43:6664–6666

    Article  Google Scholar 

  • Tsang SC, Chen YK, Harris PJF, Green MLH (1994) A simple chemical method of opening and filling carbon nanotubes. Nature 372:159–162

    Article  Google Scholar 

  • Ugarte D, Chatelain A, de Heer WA (1996) Nanocapillarity and chemistry in carbon nanotubes. Science 274:1889–1897

    Article  Google Scholar 

  • Wang C, Guo S, Pan X et al (2008) Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels. J Mater Chem 18:5782–5786

    Article  Google Scholar 

  • Winkler A, Mühl T, Menzel S et al (2006) Magnetic force microscopy sensors using iron-filled carbon nanotubes. J Appl Phys 99:104905

    Article  Google Scholar 

  • Wolny F, Mühl T, Weissker U et al (2010) Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy. Nanotechnology 21:435501

    Article  Google Scholar 

  • Ye H, Naguib N, Gogotsi Y et al (2004) Wall structure and surface chemistry of hydrothermal carbon nanofibres. Nanotechnology 15:232–236

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported in part by the US National Science Foundation under Grant NIRT CBET 0609062. MR was supported by a CIES Fulbright Fellowship. The authors thank Dr. V. Caramia for assistance with the conductivity measurements and Dr. I.S. Bayer for fruitful discussions. Both are with the Istituto Italiano di Tecnologia, Genova, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantine Megaridis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Raffi, M., Megaridis, C. et al. Magnetite (Fe3O4)-filled carbon nanofibers as electro-conducting/superparamagnetic nanohybrids and their multifunctional polymer composites. J Nanopart Res 17, 1 (2015). https://doi.org/10.1007/s11051-014-2856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2856-6

Keywords

Navigation