Skip to main content
Log in

Effect of Power Ultrasound and Pulsed Vacuum Treatments on the Dehydration Kinetics, Distribution, and Status of Water in Osmotically Dehydrated Strawberry: a Combined NMR and DSC Study

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effect of power ultrasound and pulsed vacuum (PV) treatments on the dehydration kinetics and the status of water during osmotic dehydration of strawberries was investigated. Low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) were used to determine the spatial distribution and status of water within the cellular and intercellular spaces. Differential scanning calorimetry (DSC) was used to determine the freezing point depression and the amount of frozen water. Osmotic treatment was performed by immersing the samples in 25 and 50 % (w/w) sucrose solutions at 40 °C for 3 h. Water loss and solid gain of strawberry samples were measured and the data were fitted by Peleg’s model. The Peleg’s model fitted the experimental water loss and solid gain kinetics data well (R 2 > 0.98). At a given sucrose concentration, the highest water loss and the highest decrease in firmness occurred while using ultrasound treatment, while the highest solid gain and the highest firmness values were achieved by pulsed vacuum treatment. LF-NMR signals were able to quantify the effect of water-osmotic solute exchange on the cell compartments (vacuole, cytoplasm plus intercellular space, and cell wall). The LF-NMR data showed that the relative space occupied by the vacuole decreased and the relative space occupied by the cytoplasm and intercellular space were increased due to these osmotic treatments. MRI results indicated that a bright “water strip” appeared in the periphery of all the osmotically dehydrated samples. DSC results showed that the decrease in water content and the increase in the osmotic solutes depressed the initial freezing point and the freezable water content in osmotically dehydrated strawberry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alferez, F., Alquezar, B., Burns, J. K., & Zacarias, L. (2010). Variation in water, osmotic and turgor potential in peel of ‘Marsh’ grapefruit during development of postharvest peel pitting. Postharvest Biology and Technology, 56(1), 44–49.

    Article  Google Scholar 

  • Ando, H., Kajiwara, K., Oshita, S., & Suzuki, T. (2012). The effect of osmotic dehydrofreezing on the role of the cell membrane in carrot texture softening after freeze-thawing. Journal of Food Engineering, 108(3), 473–479.

    Article  Google Scholar 

  • Azoubel, P. M., & Elizabeth Xidieh Murr, F. (2004). Mass transfer kinetics of osmotic dehydration of cherry tomato. Journal of Food Engineering, 61(3), 291–295.

    Article  Google Scholar 

  • Bchir, B., Besbes, S., Attia, H., & Blecker, C. (2009). Osmotic dehydration of pomegranate seeds: mass transfer kinetics and differential scanning calorimetry characterization. International Journal of Food Science & Technology, 44(11), 2208–2217.

    Article  CAS  Google Scholar 

  • Bowtell, R., Mansfield, P., Sharp, J., Brown, G., McJury, M., & Glover, P. (1992). NMR microscopy at 500 MHz: cellular resolution in biosystems. In B. Blümich & W. Kuhn (Eds.), Magnetic resonance microscopy (pp. 427–439). Weinheim: VCH.

    Google Scholar 

  • Cárcel, J. A., Benedito, J., Rosselló, C., & Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78(2), 472–479.

    Article  Google Scholar 

  • Chen, F. L., Wei, Y. M., & Zhang, B. (2010). Characterization of water state and distribution in textured soybean protein using DSC and NMR. Journal of Food Engineering, 100(3), 522–526.

    Article  CAS  Google Scholar 

  • Chiralt, A., & Talens, P. (2005). Physical and chemical changes induced by osmotic dehydration in plant tissues. Journal of Food Engineering, 67(1), 167–177.

    Article  Google Scholar 

  • Cornillon, P. (2000). Characterization of osmotic dehydrated apple by NMR and DSC. LWT--Food Science and Technology, 33(4), 261–267.

    Article  CAS  Google Scholar 

  • Corrêa, J. L. G., Pereira, L. M., Vieira, G. S., & Hubinger, M. D. (2010). Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. Journal of Food Engineering, 96(4), 498–504.

    Article  Google Scholar 

  • Deng, Y., & Zhao, Y. (2008). Effects of pulsed-vacuum and ultrasound on the osmodehydration kinetics and microstructure of apples (Fuji). Journal of Food Engineering, 85(1), 84–93.

    Article  Google Scholar 

  • Dermesonlouoglou, E. K., Giannakourou, M. C., & Taoukis, P. (2007). Stability of dehydrofrozen tomatoes pretreated with alternative osmotic solutes. Journal of Food Engineering, 78(1), 272–280.

    Article  CAS  Google Scholar 

  • Fernandes, F. A. N., Gallao, M. I., & Rodrigues, S. (2008). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: melon dehydration. LWT--Food Science and Technology, 41(4), 604–610.

    Article  CAS  Google Scholar 

  • Fito, P. (1994). Modelling of vacuum osmotic dehydration of food. Journal of Food Engineering, 22(1), 313–328.

    Article  Google Scholar 

  • Fito, P., Chiralt, A., Barat, J. M., & Martínez-Monzó, J. (2000). Vacuum impregnation fruit processing. In J. E. Lozano, C. A. Añon, A. E. Parada, & G. V. Barbosa-Canovas (Eds.), Trends in food engineering (pp. 149–164). Lancaster, Pa.: Technomic Publ. Co.

    Google Scholar 

  • Gabaldón-Leyva, C. A., Quintero-Ramos, A., Barnard, J., Balandrán-Quintana, R. R., Talamás-Abbud, R., & Jiménez-Castro, J. (2007). Effect of ultrasound on the mass transfer and physical changes in brine bell pepper at different temperatures. Journal of Food Engineering, 81(2), 374–379.

    Article  Google Scholar 

  • Ganjloo, A., Rahman, R. A., Bakar, J., Osman, A., & Bimakr, M. (2011). Kinetics modeling of mass transfer using Peleg’s equation during osmotic dehydration of seedless guava (Psidium guajava L.): effect of process parameters. Food and Bioprocess Technology, 5(6), 2151–2159.

    Article  Google Scholar 

  • Garcia-Noguera, J., Oliveira, F. I. P., Gallao, M. I., Weller, C. L., Rodrigues, S., & Fernandes, F. A. N. (2010). Ultrasound-assisted osmotic dehydration of strawberries: effect of pretreatment time and ultrasonic frequency. Drying Technology, 28(2), 294–303.

    Article  Google Scholar 

  • Goñi, O., Fernandez-Caballero, C., Sanchez-Ballesta, M. T., Escribano, M. I., & Merodio, C. (2011). Water status and quality improvement in high-CO2 treated table grapes. Food Chemistry, 128(1), 34–39.

    Article  Google Scholar 

  • Gussoni, M., Greco, F., Vezzoli, A., Paleari, M. A., Moretti, V. M., Lanza, B., et al. (2007). Osmotic and aging effects in caviar oocytes throughout water and lipid changes assessed by 1H NMR T1 and T2 relaxation and MRI. Magnetic Resonance Imaging, 25(1), 117–128.

    Article  CAS  Google Scholar 

  • Hills, B., & Nott, K. (1999). NMR studies of water compartmentation in carrot parenchyma tissue during drying and freezing. Applied Magnetic Resonance, 17(4), 521–535.

    Article  CAS  Google Scholar 

  • Hills, B. P., & Remigereau, B. (1997). NMR studies of changes in subcellular water compartmentation in parenchyma apple tissue during drying and freezing. International Journal of Food Science & Technology, 32(1), 51–61.

    Article  CAS  Google Scholar 

  • İspir, A., & Toğrul, İ. T. (2009). Osmotic dehydration of apricot: kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87(2), 166–180.

    Article  Google Scholar 

  • Ito, A. P., Tonon, R. V., Park, K. J., & Hubinger, M. D. (2007). Influence of process conditions on the mass transfer kinetics of pulsed vacuum osmotically dehydrated mango slices. Drying Technology, 25(10), 1769–1777.

    Article  Google Scholar 

  • Khoyi, M. R., & Hesari, J. (2007). Osmotic dehydration kinetics of apricot using sucrose solution. Journal of Food Engineering, 78(4), 1355–1360.

    Article  CAS  Google Scholar 

  • Kiani, H., Zhang, Z., Delgado, A., & Sun, D. W. (2011). Ultrasound assisted nucleation of some liquid and solid model foods during freezing. Food Research International, 44(9), 2915–2921.

    Article  CAS  Google Scholar 

  • Lagnika, C., Zhang, M., & Mothibe, K. J. (2013). Effects of ultrasound and high pressure argon on physico-chemical properties of white mushrooms (Agaricus bisporus) during postharvest storage. Postharvest Biology and Technology, 82, 87–94.

    Article  CAS  Google Scholar 

  • Lara, I., Garcia, P., & Vendrell, M. (2004). Modifications in cell wall composition after cold storage of calcium-treated strawberry (Fragaria × ananassa Duch.) fruit. Postharvest Biology and Technology, 34(3), 331–339.

    Article  CAS  Google Scholar 

  • Lewicki, P. P., & Porzecka-Pawlak, R. (2005). Effect of osmotic dewatering on apple tissue structure. Journal of Food Engineering, 66(1), 43–50.

    Article  Google Scholar 

  • Mason, T., Paniwnyk, L., & Lorimer, J. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3(3), S253–S260.

    Article  CAS  Google Scholar 

  • Moreno, J., Bugueño, G., Velasco, V., Petzold, G., & Tabilo-Munizaga, G. (2004). Osmotic dehydration and vacuum impregnation on physicochemical properties of Chilean papaya (Carica candamarcensis). Journal of Food Science, 69(3), 102–106.

    Google Scholar 

  • Moreno, J., Simpson, R., Estrada, D., Lorenzen, S., Moraga, D., & Almonacid, S. (2011). Effect of pulsed-vacuum and ohmic heating on the osmodehydration kinetics, physical properties and microstructure of apples (cv. Granny Smith). Innovative Food Science & Emerging Technologies, 12(4), 562–568.

    Article  Google Scholar 

  • Nowacka, M., Tylewicz, U., Laghi, L., Dalla Rosa, M., & Witrowa-Rajchert, D. (2013). Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chemistry. doi:10.1016/j.foodchem.2013.05.129.

    Google Scholar 

  • Ohkuma, C., Kawai, K., Viriyarattanasak, C., Mahawanich, T., Tantratian, S., Takai, R., et al. (2008). Glass transition properties of frozen and freeze-dried surimi products: effects of sugar and moisture on the glass transition temperature. Food Hydrocolloids, 22(2), 255–262.

    Article  CAS  Google Scholar 

  • Oliveira, F. I. P., Gallão, M. I., Rodrigues, S., & Fernandes, F. A. N. (2010). Dehydration of Malay apple (Syzygium malaccense L.) using ultrasound as pre-treatment. Food and Bioprocess Technology, 4(4), 610–615.

    Article  Google Scholar 

  • Palou, E., Lopez-Malo, A., Argaiz, A., & Welti, J. (1994). The use of Peleg’s equation to model osmotic concentration of papaya. Drying Technology, 12(4), 965–978.

    Article  Google Scholar 

  • Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purees. Innovative Food Science & Emerging Technologies, 10(3), 308–313.

    Article  CAS  Google Scholar 

  • Provencher, S. W. (1982). CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Computer Physics Communications, 27(3), 229–242.

    Article  Google Scholar 

  • Ramallo, L. A., & Mascheroni, R. H. (2010). Dehydrofreezing of pineapple. Journal of Food Engineering, 99(3), 269–275.

    Article  Google Scholar 

  • Rastogi, N. K., Angersbach, A., & Knorr, D. (2000). Evaluation of mass transfer mechanism during osmotic treatment of plant materials. Journal of Food Science, 65, 1016–1021.

    Article  CAS  Google Scholar 

  • Rodrigues, S., & Fernandes, F. A. (2007). Image analysis of osmotically dehydrated fruits: melons dehydration in a ternary system. European Food Research and Technology, 225(5–6), 685–691.

    Article  CAS  Google Scholar 

  • Rodrigues, S., Oliveira, F. I. P., Gallao, M. I., & Fernandes, F. A. N. (2009). Effect of immersion time in osmosis and ultrasound on papaya cell structure during dehydration. Drying Technology, 27(2), 220–225.

    Article  CAS  Google Scholar 

  • Santagapita, P., Laghi, L., Panarese, V., Tylewicz, U., Rocculi, P., & Rosa, M. D. (2012). Modification of transverse NMR relaxation times and water diffusion coefficients of kiwifruit pericarp tissue subjected to osmotic dehydration. Food and Bioprocess Technology, 6(6), 1434–1443.

    Article  Google Scholar 

  • Simal, S., Benedito, J., Sánchez, E. S., & Rosselló, C. (1998). Use of ultrasound to increase mass transport rates during osmotic dehydration. Journal of Food Engineering, 36(3), 323–336.

    Article  Google Scholar 

  • Stojanovic, J., & Silva, J. L. (2007). Influence of osmotic concentration, continuous high frequency ultrasound and dehydration on antioxidants, colour and chemical properties of rabbiteye blueberries. Food Chemistry, 101(3), 898–906.

    Article  CAS  Google Scholar 

  • Taiwo, K. A., Eshtiaghi, M. N., Ade-Omowaye, B. I., & Knorr, D. (2003). Osmotic dehydration of strawberry halves: influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. International Journal of Food Science & Technology, 38(6), 693–707.

    Article  CAS  Google Scholar 

  • Tylewicz, U., Panarese, V., Laghi, L., Rocculi, P., Nowacka, M., Placucci, G., et al. (2011). NMR and DSC water study during osmotic dehydration of Actinidia deliciosa and Actinidia chinensis kiwifruit. Food Biophysics, 6(2), 327–333.

    Article  Google Scholar 

  • Vicente, S., Nieto, A. B., Hodara, K., Castro, M. A., & Alzamora, S. M. (2011). Changes in structure, rheology, and water mobility of apple tissue induced by osmotic dehydration with glucose or trehalose. Food and Bioprocess Technology, 5(8), 3075–3089.

    Article  Google Scholar 

  • Wu, L., Orikasa, T., Tokuyasu, K., Shiina, T., & Tagawa, A. (2009). Applicability of vacuum-dehydrofreezing technique for the long-term preservation of fresh-cut eggplant: effects of process conditions on the quality attributes of the samples. Journal of Food Engineering, 91(4), 560–565.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from China National Natural Science Foundation (Contract No. 21176104) which has enabled us to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Xf., Zhang, M., Adhikari, B. et al. Effect of Power Ultrasound and Pulsed Vacuum Treatments on the Dehydration Kinetics, Distribution, and Status of Water in Osmotically Dehydrated Strawberry: a Combined NMR and DSC Study. Food Bioprocess Technol 7, 2782–2792 (2014). https://doi.org/10.1007/s11947-014-1355-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1355-1

Keywords

Navigation