Skip to main content
Log in

Kinetics Modeling of Mass Transfer Using Peleg’s Equation During Osmotic Dehydration of Seedless Guava (Psidium guajava L.): Effect of Process Parameters

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Peleg’s equation was used to study the effect of process parameters on kinetics of mass transfer in terms of solids gain and water loss during osmotic dehydration using 30–50% (w/w) sucrose solution at 30, 40 and 50 °C. The experimental data were successfully fitted employing Peleg’s equation with the coefficient of determination (R 2) higher than 0.88, the root mean square error, and the mean relative percentage deviation modulus (E) of less than 0.003% and 6.40% for all treatments, respectively. In all cases, initial mass transfer rate parameter (K 1) decreased significantly (p < 0.05) as the solution concentration and solution temperature increased suggesting a corresponding increase in the initial mass transfer rate. Initial mass transfer rate followed an Arrhenius relationship which showed that solids gain had the highest temperature sensitivity (E a = 21.93–33.84 kJ mol−1) during osmotic dehydration. Equilibrium mass transfer parameter (K 2) decreased significantly (p < 0.05) as solution concentration increased demonstrating that the equilibrium solid and water contents increased with increase in solution concentration. The equilibrium solid and water contents were also estimated adequately using Peleg’s equation (R 2 > 0.78). The results of this work allow estimating the kinetics of mass transfer during osmotic dehydration in order to obtain products with determined solid and water contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

E a :

Activation energy (kJ mol−1)

k 0 :

Frequency factor (min−1)

K 1 :

Peleg rate constant (min g/g−1)

K 2 :

Peleg capacity constant (g/g)−1

M :

Mass of sample (g) after time (t)

m :

Dry mass of sample (g) after time (t)

n :

Number of experimental data

R :

Universal gas constant (8.314 kJ/mol K)

SG:

Solid gain (g/g)

T :

Absolute temperature (K)

t :

Time (min)

V :

Value

WL:

Water loss (g/g)

X :

Dependent variable

∞:

At equilibrium

0:

At the beginning of the process

exp:

Experimental

pre:

Predicted

References

  • Andrade, S. A. C., de Barros Neto, B., Nobrega, A. C., Azoubel, P. M., & Guerra, N. B. (2007). Evaluation of water and sucrose diffusion coefficients during osmotic dehydration of jenipapo (Genipa americana L.). Journal of Food Engineering, 78, 551–555.

    Article  Google Scholar 

  • AOAC. (1990). Official methods of analysis. Washington: Association of Official Analytical Chemists.

    Google Scholar 

  • Askar, A., Abdel-Fadeel, M. G., Ghonaim, S. M., Abdel-Gaid, I. O., & Ali, A. M. (1996). Osmotic and solar dehydration of peach fruits. Fruit Processing, 9(1), 258–262.

    Google Scholar 

  • Atarés, L., Chiralt, A., & González-Martínez, C. (2008). Effect of solute on osmotic dehydration and rehydration of vacuum impregnated apple cylinders (cv. Granny Smith). Journal of Food Engineering, 89(1), 49–56.

    Article  Google Scholar 

  • Azoubel, P. M., & Murr, F. E. X. (2004). Mass transfer kinetics of osmotic dehydration of cherry tomato. Journal of Food Engineering, 61, 291–295.

    Article  Google Scholar 

  • Bchir, B., Besbes, S., Karoui, R., Paquot, M., Attia, H., & Blecker, C. (2010). Osmotic dehydration kinetics of pomegranate seeds using date juice as an immersion solution Base. Food and Bioprocess Technology. doi:10.1007/s11947-010-0442-1. in press.

    Google Scholar 

  • Chausi, B., Couture, F., & Roques, M. (2001). Modelling of multicomponent mass transport in deformable media. Application to dewatering impregnation soaking processes. Drying Technology, 19, 2081–2101.

    Article  CAS  Google Scholar 

  • Chenlo, F., Moreira, R., Fernandez-Herrero, C., & Vazquez, G. (2006). Experimental results and modeling of the osmotic dehydration kinetics of chestnut with glucose solutions. Journal of Food Engineering, 74, 324–334.

    Article  CAS  Google Scholar 

  • Corrêa, J. L. G., Pereira, L. M., Vieira, G. S., & Hubinger, M. D. (2010). Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. Journal of Food Engineering, 96, 498–504.

    Article  Google Scholar 

  • Corzo, O., & Bracho, N. (2004). Effects of brine concentration and temperature on equilibrium distribution coefficients during osmotic dehydration of sardine sheets. Lebensmittel-Wissenschaft und Technologie, 37, 475–479.

    Article  CAS  Google Scholar 

  • Corzo, O., & Bracho, N. (2005). Osmotic dehydration kinetics of sardine sheets using Zugarramurdi and Lupín model. Journal of Food Engineering, 66, 51–56.

    Article  Google Scholar 

  • Corzo, O., & Bracho, N. (2006). Application of Peleg’s model to study mass transfer during osmotic dehydration of sardine sheets. Journal of Food Engineering, 75, 535–541.

    Article  Google Scholar 

  • Deng, Y., & Zhao, Y. (2008). Effects of pulsed-vacuum and ultrasound on the osmodehydration kinetics and microstructure of apples (Fuji). Journal of Food Engineering, 85, 84–93.

    Article  Google Scholar 

  • Eren, I., & Kaymak-Ertekin, F. (2007). Optimization of osmotic dehydration of potato using response surface methodology. Journal of Food Engineering, 79, 344–352.

    Article  Google Scholar 

  • Falade, K. O., Igbeka, J. C., & Ayanwuyi, F. A. (2007). Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80, 979–985.

    Article  Google Scholar 

  • Fermin, W. J., & Corzo, O. (2005). Optimization of vacuum pulse osmotic dehydration of cantaloupe using response surface methodology. Journal of Food Processing and Preservation, 29(1), 20–32.

    Article  Google Scholar 

  • García-Martínez, E., Martínez-Monzó, J., Camacho, M. M., & Martínez-Navarrete, N. (2002). Osmotic solution as ingredient in new product formulation. Food Research International, 35, 307–312.

    Article  Google Scholar 

  • Hawkes, J., & Flink, J. M. (1978). Osmotic concentration of fruit slices prior to freeze dehydration. Journal of Food Processing and Preservation, 2, 265–284.

    Article  CAS  Google Scholar 

  • Ispir, A., & Togrul, I. T. (2009). Osmotic dehydration of apricot: kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87, 166–180.

    Article  CAS  Google Scholar 

  • Ito, A. P., Tonon, R. V., Park, K. J., & Hubinger, M. D. (2007). Influence of process conditions on the mass transfer kinetics of pulsed vacuum osmotically dehydrated mango slices. Drying Technology, 25(11), 1769–1777.

    Article  Google Scholar 

  • Khin, M. M., Zhou, W., & Perera, C. O. (2006). A study of the mass transfer in osmotic dehydration of coated potato cubes. Journal of Food Engineering, 77, 84–95.

    Article  Google Scholar 

  • Khoyi, M. R., & Hesari, J. (2007). Osmotic dehydration kinetics of apricot using sucrose solution. Journal of Food Engineering, 78(4), 1355–1360.

    Article  CAS  Google Scholar 

  • Le Maguer, M. (1988). Osmotic dehydration: review and future directions. International symposium progress in food preservation processes, Ceria, Brussels, Belgium

  • Lenart, A., & Flink, S. M. (1984). Osmotic concentration of potato I. Criteria for the end point of the osmosis process. Journal of Food Technology, 19, 65–89.

    Article  Google Scholar 

  • Madamba, P. S. (2003). Thin layer drying models for osmotically predried young coconut. Drying Technology, 21, 1759–1780.

    Article  Google Scholar 

  • Mastrantonio, S. D. S., Pereira, L. M., & Hubinger, M. D. (2005). Osmotic dehydration kinetics of guavas in maltose solutions with calcium salt. Alimentos e Nutrição, 16, 309–314.

    CAS  Google Scholar 

  • Mayor, L., Moreira, R., Chenlo, F., & Sereno, A. M. (2006). Kinetics of osmotic dehydration of pumpkin with sodium chloride solutions. Journal of Food Engineering, 74, 253–262.

    Article  CAS  Google Scholar 

  • Moreira, R., Chenlo, F., Torres, M. D., & Vazquez, G. (2007). Effect of stirring in the osmotic dehydration of chestnut using glycerol solutions. LWT Food Science and Technology, 40, 1507–1514.

    Article  CAS  Google Scholar 

  • Palou, E., Lopez-Malo, A., Argaiz, A., & Welti, J. (1993). Osmotic dehydration of papaya: effect of syrup concentration. Revista Espanola de Ciencia e Tecnologia de Alimento, 33(6), 621–630.

    CAS  Google Scholar 

  • Panades, G., Fito, P., Aguiar, Y., Nunez de Villavicencio, M., & Acosta, V. (2006). Osmotic dehydration of guava: influence of operating parameters on process kinetics. Journal of Food Engineering, 72, 383–389.

    Article  Google Scholar 

  • Panades, G., Castro, D., Chiralt, A., Fito, P., Nuñez, M., & Jimenez, R. (2008). Mass transfer mechanisms occurring in osmotic dehydration of guava. Journal of Food Engineering, 87(3), 386–390.

    Article  Google Scholar 

  • Panagiotou, N. M., Karathanos, V. T., & Maroulis, Z. B. (1999). Effect of osmotic agent on osmotic dehydration of fruits. Drying Technology, 17(1/2), 175–189.

    Article  CAS  Google Scholar 

  • Parjoko, M., Rahman, S., Buckle, K. A., & Perera, C. (1996). Osmotic dehydration kinetics of pineapple wedges using palm sugar. Lebensmittel-Wissenschaft und-Technolgie, 29, 452–459.

    Article  CAS  Google Scholar 

  • Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4), 1216–1218.

    Article  Google Scholar 

  • Pokharkar, S. M. (2001). Kinetic model for osmotic dehydration of green peas prior to air-drying. Journal of Food Science and Technology, 38(6), 557–560.

    Google Scholar 

  • Prothon, F., Ahrne, L. M., Funebo, T., Kidman, S., Langton, M., & Sjoholm, I. (2001). Effects of combined osmotic and microwave dehydration of apple on texture, microstructure and rehydration characteristics. Lebensmittel-Wissenschaft und Technologie, 34, 95–101.

    Article  CAS  Google Scholar 

  • Rahman, M. S., & Lamb, J. (1990). Osmotic dehydration of pineapple. Journal of Food Science and Technology, 27, 150–152.

    Google Scholar 

  • Rastogi, N. K., & Raghavarao, K. S. M. S. (2004). Mass transfer during osmotic dehydration of pineapple: considering Fickian diffusion in cubical configuration. Lebensmittel-Wissenschaft und Technologie, 37, 43–47.

    Article  CAS  Google Scholar 

  • Rastogi, N. K., Raghavarao, K. S. M. S., Niranjan, K., & Knorr, D. (2002). Recent developments in osmotic dehydration: methods to enhance mass transfer. Trends in Food Science and Technology, 13(2), 58–69.

    Article  Google Scholar 

  • Ruiz-López, I., Castillo-Zamudio, R. I., Salgado-Cervantes, M. A., Rodríguez-Jimenes, G. C., & García-Alvarado, M. A. (2008). Mass transfer modeling during osmotic dehydration of hexahedral pineapple slices in limited volume solutions. Food and Bioprocess Technology. doi:10.1007/s11947-008-0102-x. in press.

    Google Scholar 

  • Sablani, S. S., Rahman, M. S., & Al-Sadeiri, D. S. (2002). Equilibrium distribution data for osmotic drying of apple cubes in sugar-water solution. Journal of Food Engineering, 52, 193–199.

    Article  Google Scholar 

  • Sachetti, G., Gianotti, A., & Dalla Rosa, M. (2001). Sucrose-salt combined effects on mass transfer kinetics and product acceptability. Study on apple osmotic treatments. Journal of Food Engineering, 49, 163–173.

    Article  Google Scholar 

  • Sagar, V. R. (2001). Preparation of onion powder by means of osmotic dehydration and its packaging and storage. Journal of Food Science and Technology, 38(5), 525–528.

    Google Scholar 

  • Shi, J., Pan, Z., McHugh, T., & Hirschberg, E. (2009). Effect of infusion method and parameters on solids gain in blueberries. Food and Bioprocess Technology, 3, 271–278.

    Article  Google Scholar 

  • Singh, B., Kumar, A., & Gupta, A. K. (2007). Study of mass transfer kinetics and effective diffusivity during osmotic dehydration of carrot cubes. Journal of Food Engineering, 79, 471–480.

    Article  CAS  Google Scholar 

  • Sutar, P. P., & Gupta, D. K. (2007). Mathematical modeling of mass transfer in osmotic dehydration of onion slices. Journal of Food Engineering, 78(1), 90–97.

    Article  Google Scholar 

  • Tortoe, C., Orchard, J., & Beezer, A. (2007). Osmotic dehydration kinetics of apple, banana and potato. International Journal of Food Science & Technology, 42, 312–318.

    Article  CAS  Google Scholar 

  • Uddin, B. M., Ainsworth, P., & Ibanoglu, S. (2004). Evaluation of mass exchange during osmotic dehydration of carrots using response surface methodology. Journal of Food Engineering, 65, 473–477.

    Article  Google Scholar 

  • Uribe, E., Miranda, M., Vega-Gálvez, A., Quispe, I., Clavería, R., & Di Scala, K. (2010). Mass transfer modelling during osmotic dehydration of jumbo squid (Dosidicus gigas): influence of Temperature on Diffusion Coefficients and Kinetic Parameters. Food and Bioprocess Technology. doi:10.1007/s11947-010-0336-2.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support received from the Ministry of Higher Education through the Fundamental Research Grant Scheme (FRGS) and Universiti Putra Malaysia for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ganjloo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganjloo, A., Rahman, R.A., Bakar, J. et al. Kinetics Modeling of Mass Transfer Using Peleg’s Equation During Osmotic Dehydration of Seedless Guava (Psidium guajava L.): Effect of Process Parameters. Food Bioprocess Technol 5, 2151–2159 (2012). https://doi.org/10.1007/s11947-011-0546-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0546-2

Keywords

Navigation