Skip to main content

Advertisement

Log in

Current and Future Treatments for Lysosomal Storage Disorders

  • Pediatric Neurology (R-M Boustany, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review Lysosomal storage disorders (LSDs) are a class of genetic disorders that are a testing ground for the invention of novel therapeutics including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), gene therapy, and hematopoietic stem cell transplant (HSCT). This review summarizes recently approved drugs, then examines the successful clinical trials in gene therapy and HSCT.

Recent findings The FDA has recently approved a second SRT by reversing an earlier FDA decision, suggesting a favorable regulatory landscape going forward. Adeno-associated virus therapies, adenovirus therapies, and HSCT have overcome limitations of earlier clinical and preclinical trials, suggesting that gene therapy may be a reality for LSDs in the near future. At the same time, the first EU-approved gene therapy drug, Glybera, has been discontinued, and other ex vivo-based therapies although approved for clinical use have failed to be widely adapted and are no longer economically viable.

Summary There are now 11 ERTs and two SRTs approved for LSDs in the USA. Gene therapy approaches and HSCT have also demonstrated promising clinical trial results suggesting that these therapies are on the frontier. Challenges that remain include navigating immune responses, developing drugs capable of crossing the blood-brain barrier (BBB), developing therapies that can reverse end-organ damage, and achieving these goals in a safe, ethical, and financially sustainable manner. The amount of active development and a track record of iterative progress suggest that treatments for LSDs will continue to be a field of innovation, problem solving, and success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mechtler TP, Stary S, Metz TF, De Jesús VR, Greber-Platzer S, Pollak A, et al. Neonatal screening for lysosomal storage disorders: feasibility and incidence from a nationwide study in Austria. Lancet. 2012;379(9813):335–41.

    Article  PubMed  Google Scholar 

  2. Futerman AH, van Meer G. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol. 2004;5(7):554–65.

    Article  CAS  PubMed  Google Scholar 

  3. Hoffmann B, Mayatepek E. Neurological manifestations in lysosomal storage disorders—from pathology to first therapeutic possibilities. Neuropediatrics. 2005;36(5):285–9.

    Article  CAS  PubMed  Google Scholar 

  4. Umapathysivam K, Hopwood JJ, Meikle PJ. Correlation of acid alpha-glucosidase and glycogen content in skin fibroblasts with age of onset in Pompe disease. Clin Chim Acta. 2005;361(1–2):191–8.

    Article  CAS  PubMed  Google Scholar 

  5. Leinekugel P, Michel S, Conzelmann E, Sandhoff K. Quantitative correlation between the residual activity of beta-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet. 1992;88(5):513–23.

    Article  CAS  PubMed  Google Scholar 

  6. Polten A, Fluharty AL, Fluharty CB, Kappler J, von Figura K, Gieselmann V. Molecular basis of different forms of metachromatic leukodystrophy. N Engl J Med. 1991;324(1):18–22.

    Article  CAS  PubMed  Google Scholar 

  7. Spada M, Pagliardini S, Yasuda M, Tukel T, Thiagarajan G, Sakuraba H, et al. High incidence of later-onset Fabry disease revealed by newborn screening*. Am J Hum Genet. 2006;79(1):31–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fratantoni JC, Hall CW, Neufeld EF. Hurler and Hunter syndromes: mutual correction of the defect in cultured fibroblasts. Science. 1968;162(3853):570–2.

    Article  CAS  PubMed  Google Scholar 

  9. Rastall DP, Amalfitano A. Recent advances in gene therapy for lysosomal storage disorders. Appl Clin Genet. 2015;8:157–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Berrier KL, Kazi ZB, Prater SN, Bali DS, Goldstein J, Stefanescu MC, et al. CRIM-negative infantile Pompe disease: characterization of immune responses in patients treated with ERT monotherapy. Genet Med Off J Am Coll Med Genet. 2015;17(11):912–8.

    CAS  Google Scholar 

  11. Bali DS, Goldstein JL, Banugaria S, Dai J, Mackey J, Rehder C, et al. Predicting cross-reactive immunological material (CRIM) status in Pompe disease using GAA mutations: lessons learned from 10 years of clinical laboratory testing experience. Am J Med Genet C Semin Med Genet. 2012;160C(1):40–9.

    Article  PubMed  Google Scholar 

  12. Kishnani PS, Goldenberg PC, DeArmey SL, Heller J, Benjamin D, Young S, et al. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab. 2010;99(1):26–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Messinger YH, Mendelsohn NJ, Rhead W, Dimmock D, Hershkovitz E, Champion M, et al. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease. Genet Med. 2012;14(1):135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Banugaria SG, Patel TT, Mackey J, Das S, Amalfitano A, Rosenberg AS, et al. Persistence of high sustained antibodies to enzyme replacement therapy despite extensive immunomodulatory therapy in an infant with Pompe disease: need for agents to target antibody-secreting plasma cells. Mol Genet Metab. 2012;105(4):677–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levine JC, Kishnani PS, Chen YT, Herlong JR, Li JS. Cardiac remodeling after enzyme replacement therapy with acid alpha-glucosidase for infants with Pompe disease. Pediatr Cardiol. 2008;29(6):1033–42.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Amalfitano A, Bengur AR, Morse RP, Majure JM, Case LE, Veerling DL, et al. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med Off J Am Coll Med Genet. 2001;3(2):132–8.

    CAS  Google Scholar 

  17. Weidemann F, Niemann M, Breunig F, Herrmann S, Beer M, Stork S, et al. Long-term effects of enzyme replacement therapy on Fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation. 2009;119(4):524–9.

    Article  CAS  PubMed  Google Scholar 

  18. •• Sessa M, Lorioli L, Fumagalli F, Acquati S, Redaelli D, Baldoli C, et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet Lond Engl. 2016;388(10043):476–87. This study is the first strong evidence for the potential of genetically modified HSCT to reach and improve the central nervous system damage in neuropathic LSD, although it is open-label and ad hoc, so should be confirmed in a trial without these limitations

    Article  CAS  Google Scholar 

  19. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013 Aug 23;341(6148):1233158.

    Article  PubMed  Google Scholar 

  20. Schiffmann R, FitzGibbon EJ, Harris C, DeVile C, Davies EH, Abel L, et al. Randomized, controlled trial of miglustat in Gaucher’s disease type 3. Ann Neurol. 2008;64(5):514–22.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leone P, Shera D, McPhee SWJ, Francis JS, Kolodny EH, Bilaniuk LT, et al. Long-term follow-up after gene therapy for Canavan disease. Sci Transl Med. 2012;4(165):165ra163.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ingemann L, Kirkegaard T. Lysosomal storage diseases and the heat shock response: convergences and therapeutic opportunities. J Lipid Res. 2014;55(11):2198–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deganuto M, Pittis MG, Pines A, Dominissini S, Kelley MR, Garcia R, et al. Altered intracellular redox status in Gaucher disease fibroblasts and impairment of adaptive response against oxidative stress. J Cell Physiol. 2007;212(1):223–35.

    Article  CAS  PubMed  Google Scholar 

  24. Vitner EB, Platt FM, Futerman AH. Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem. 2010;285(27):20423–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. • Smith BK, Martin AD, Lawson LA, Vernot V, Marcus J, Islam S, et al. Inspiratory muscle conditioning exercise and diaphragm gene therapy in Pompe disease: clinical evidence of respiratory plasticity. Exp Neurol. 2017;287(Pt 2):216–24. This clinical trial summarizes the progress made using AAV for the respiratory symptoms of Pompe disease

    Article  PubMed  Google Scholar 

  26. Barton NW, Brady RO, Dambrosia JM, Di Bisceglie AM, Doppelt SH, Hill SC, et al. Replacement therapy for inherited enzyme deficiency—macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med. 1991;324(21):1464–70.

    Article  CAS  PubMed  Google Scholar 

  27. Murray GJ. Lectin-specific targeting of lysosomal enzymes to reticuloendothelial cells. Methods Enzymol. 1987;149:25–42.

    Article  CAS  PubMed  Google Scholar 

  28. Coutinho MF, Prata MJ, Alves S. Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Mol Genet Metab. 2012;105(4):542–50.

    Article  CAS  PubMed  Google Scholar 

  29. Schiffmann R, Kopp JB, Austin HA III, Sabnis S, Moore DF, Weibel T, et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA. 2001;285(21):2743.

    Article  CAS  PubMed  Google Scholar 

  30. Biegstraaten M, Arngrímsson R, Barbey F, Boks L, Cecchi F, Deegan PB, et al. Recommendations for initiation and cessation of enzyme replacement therapy in patients with Fabry disease: the European Fabry working group consensus document. Orphanet J Rare Dis. 2015;10:36.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hendriksz CJ, Berger KI, Giugliani R, Harmatz P, Kampmann C, Mackenzie WG, et al. International guidelines for the management and treatment of Morquio A syndrome. Am J Med Genet A. 2015;167(1):11–25.

    Article  Google Scholar 

  32. Cupler EJ, Berger KI, Leshner RT, Wolfe GI, Han JJ, Barohn RJ, et al. Consensus treatment recommendations for late-onset Pompe disease. Muscle Nerve. 2012;45(3):319–33.

    Article  PubMed  Google Scholar 

  33. Jurecka A, Tylki-Szymańska A. Enzyme replacement therapy: lessons learned and emerging questions. Expert Opin Orphan Drugs. 2015;3(3):293–305.

    Article  CAS  Google Scholar 

  34. Desnick RJ, Schuchman EH. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat Rev Genet. 2002;3(12):954–66.

    Article  CAS  PubMed  Google Scholar 

  35. Rombach SM, Hollak CE, Linthorst GE, Dijkgraaf MG. Cost-effectiveness of enzyme replacement therapy for Fabry disease. Orphanet J Rare Dis. 2013;8(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Banugaria SG, Prater SN, Patel TT, DeArmey SM, Milleson C, Sheets KB, et al. Algorithm for the early diagnosis and treatment of patients with cross reactive immunologic material-negative classic infantile Pompe disease: a step towards improving the efficacy of ERT. PLoS One. 2013;8(6):e67052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Elder ME, Nayak S, Collins SW, Lawson LA, Kelley JS, Herzog RW, et al. B-cell depletion and immunomodulation prior to initiation of enzyme replacement therapy blocks the immune response to acid alpha glucosidase in infantile onset Pompe disease. J Pediatr. 2013;163(3):847–54.e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Gelder CM, Hoogeveen-Westerveld M, Kroos MA, Plug I, van der Ploeg AT, Reuser AJJ. Enzyme therapy and immune response in relation to CRIM status: the Dutch experience in classic infantile Pompe disease. J Inherit Metab Dis. 2015;38(2):305–14.

    Article  PubMed  Google Scholar 

  39. Drug Approval Package: Zavesca (Miglustat) NDA #021348 [Internet]. [cited 2017 Jun 12]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21-348_Zavesca.cfm

  40. Cox T, Lachmann R, Hollak C, Aerts J, van Weely S, Hrebícek M, et al. Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet Lond Engl. 2000;355(9214):1481–5.

    Article  CAS  Google Scholar 

  41. Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE. Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol. 2007;6(9):765–72.

    Article  CAS  PubMed  Google Scholar 

  42. Wraith JE, Imrie J. New therapies in the management of Niemann-Pick type C disease: clinical utility of miglustat. Ther Clin Risk Manag. 2009;5:877–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Piotrowska E, Jakóbkiewicz-Banecka J, Tylki-Szymanska A, Liberek A, Maryniak A, Malinowska M, et al. Genistin-rich soy isoflavone extract in substrate reduction therapy for Sanfilippo syndrome: an open-label, pilot study in 10 pediatric patients. Curr Ther Res. 2008;69(2):166–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aerts JMFG, Hollak CEM, Boot RG, Groener JEM, Maas M. Substrate reduction therapy of glycosphingolipid storage disorders. J Inherit Metab Dis. 2006;29(2–3):449–56.

    Article  PubMed  Google Scholar 

  45. Marshall J, Sun Y, Bangari DS, Budman E, Park H, Nietupski JB, et al. CNS-accessible inhibitor of glucosylceramide synthase for substrate reduction therapy of neuronopathic Gaucher disease. Mol Ther. 2016;24(6):1019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–55.

    Article  CAS  PubMed  Google Scholar 

  47. Zhu J, Huang X, Yang Y. The TLR9-MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice. J Clin Invest. 2009;119(8):2388–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suzuki M, Bertin TK, Rogers GL, Cela RG, Zolotukhin I, Palmer DJ, et al. Differential type I interferon-dependent transgene silencing of helper-dependent adenoviral vs. adeno-associated viral vectors in vivo. Mol Ther J Am Soc Gene Ther. 2013;21(4):796–805.

    Article  CAS  Google Scholar 

  49. Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122(1):23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Appledorn DM, Patial S, McBride A, Godbehere S, Van Rooijen N, Parameswaran N, et al. Adenovirus vector-induced innate inflammatory mediators, MAPK signaling, as well as adaptive immune responses are dependent upon both TLR2 and TLR9 in vivo. J Immunol Baltim Md 1950. 2008;181(3):2134–44.

    CAS  Google Scholar 

  51. Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JEJ, et al. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med. 2007;13(4):419–22.

    Article  CAS  PubMed  Google Scholar 

  52. Aldhamen YA, Seregin SS, Schuldt NJ, Rastall DPW, Liu CJ, Godbehere S, et al. Vaccines expressing the innate immune modulator EAT-2 elicit potent effector memory T lymphocyte responses despite pre-existing vaccine immunity. J Immunol. 2012;189(3):1349–59.

    Article  CAS  PubMed  Google Scholar 

  53. Worgall S, Sondhi D, Hackett NR, Kosofsky B, Kekatpure MV, Neyzi N, et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther. 2008;19(5):463–74.

    Article  CAS  PubMed  Google Scholar 

  54. McPhee SWJ, Janson CG, Li C, Samulski RJ, Camp AS, Francis J, et al. Immune responses to AAV in a phase I study for Canavan disease. J Gene Med. 2006;8(5):577–88.

    Article  CAS  PubMed  Google Scholar 

  55. Tardieu M, Zérah M, Husson B, de Bournonville S, Deiva K, Adamsbaum C, et al. Intracerebral administration of adeno-associated viral vector serotype rh.10 carrying human SGSH and SUMF1 cDNAs in children with mucopolysaccharidosis type IIIA disease: results of a phase I/II trial. Hum Gene Ther. 2014;25(6):506–16.

    Article  CAS  PubMed  Google Scholar 

  56. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–12.

    Article  CAS  PubMed  Google Scholar 

  57. Barouch DH, Pau MG, Custers JHHV, Koudstaal W, Kostense S, Havenga MJE, et al. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J Immunol. 2004;172(10):6290–7.

    Article  CAS  PubMed  Google Scholar 

  58. Murphy SL, Li H, Zhou S, Schlachterman A, High K. Prolonged susceptibility to antibody-mediated neutralization for adeno-associated vectors targeted to the liver. Mol Ther J Am Soc Gene Ther. 2008;16(1):138–45.

    Article  CAS  Google Scholar 

  59. Scallan CD, Jiang H, Liu T, Patarroyo-White S, Sommer JM, Zhou S, et al. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood. 2006;107(5):1810–7.

    Article  CAS  PubMed  Google Scholar 

  60. Kotterman MA, Yin L, Strazzeri JM, Flannery JG, Merigan WH, Schaffer DV. Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates. Gene Ther. 2015;22(2):116–26.

    Article  CAS  PubMed  Google Scholar 

  61. Treleaven CM, Tamsett TJ, Bu J, Fidler JA, Sardi SP, Hurlbut GD, et al. Gene transfer to the CNS is efficacious in immune-primed mice harboring physiologically relevant titers of anti-AAV antibodies. Mol Ther J Am Soc Gene Ther. 2012;20(9):1713–23.

    Article  CAS  Google Scholar 

  62. Gernoux G, Wilson JM, Mueller C. Regulatory and exhausted T cell responses to AAV capsid. Hum Gene Ther. 2017;28(4):338–49.

    Article  CAS  PubMed  Google Scholar 

  63. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, et al. Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med. 2006;12(3):342–7.

    Article  CAS  PubMed  Google Scholar 

  64. Ding E, Hu H, Hodges BL, Migone F, Serra D, Xu F, et al. Efficacy of gene therapy for a prototypical lysosomal storage disease (GSD-II) is critically dependent on vector dose, transgene promoter, and the tissues targeted for vector transduction. Mol Ther J Am Soc Gene Ther. 2002;5(4):436–46.

    Article  CAS  Google Scholar 

  65. Xu F, Ding E, Migone F, Serra D, Schneider A, Chen Y-T, et al. Glycogen storage in multiple muscles of old GSD-II mice can be rapidly cleared after a single intravenous injection with a modified adenoviral vector expressing hGAA. J Gene Med. 2005;7(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  66. Xu F, Ding E, Liao SX, Migone F, Dai J, Schneider A, et al. Improved efficacy of gene therapy approaches for Pompe disease using a new, immune-deficient GSD-II mouse model. Gene Ther. 2004;11(21):1590–8.

    Article  CAS  PubMed  Google Scholar 

  67. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012—an update. J Gene Med. 2013;15(2):65–77.

    Article  CAS  PubMed  Google Scholar 

  68. Brunetti-Pierri N, Ng P. Gene therapy with helper-dependent adenoviral vectors: lessons from studies in large animal models. Virus Genes. 2017;7

  69. Brunetti-Pierri N, Ng T, Iannitti D, Cioffi W, Stapleton G, Law M, et al. Transgene expression up to 7 years in nonhuman primates following hepatic transduction with helper-dependent adenoviral vectors. Hum Gene Ther. 2013;24(8):761–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. • Rastall DPW, Seregin SS, Aldhamen YA, Kaiser LM, Mullins C, Liou A, et al. Long-term, high-level hepatic secretion of acid α-glucosidase for Pompe disease achieved in non-human primates using helper-dependent adenovirus. Gene Ther. 2016;23(10):743–52. This is the first study able to achieve systemic high levels of enzyme in the bloodstream of a large animal. This is a critical step forward for liver-directed gene therapy that overcomes previous limitations using novel vector design and administration

    Article  CAS  PubMed  Google Scholar 

  71. Nietupski JB, Hurlbut GD, Ziegler RJ, Chu Q, Hodges BL, Ashe KM, et al. Systemic administration of AAV8-α-galactosidase A induces humoral tolerance in nonhuman primates despite low hepatic expression. Mol Ther J Am Soc Gene Ther. 2011;19(11):1999–2011.

    Article  CAS  Google Scholar 

  72. Seregin SS, Appledorn DM, McBride AJ, Schuldt NJ, Aldhamen YA, Voss T, et al. Transient pretreatment with glucocorticoid ablates innate toxicity of systemically delivered adenoviral vectors without reducing efficacy. Mol Ther. 2009;17(4):685–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther J Am Soc Gene Ther. 2008;16(6):1073–80.

    Article  CAS  Google Scholar 

  74. N.V uniQure. uniQure announces it will not seek marketing authorization renewal for Glybera in Europe [Internet]. GlobeNewswire News Room. 2017. [cited 2017 Aug 1]. Available from: http://globenewswire.com/news-release/2017/04/20/962549/0/en/uniQure-Announces-It-Will-Not-Seek-Marketing-Authorization-Renewal-for-Glybera-in-Europe.html

  75. Bryant LM, Christopher DM, Giles AR, Hinderer C, Rodriguez JL, Smith JB, et al. Lessons learned from the clinical development and market authorization of glybera. Hum Gene Ther Clin Dev. 2013;24(2):55–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Biffi A, Capotondo A, Fasano S, del Carro U, Marchesini S, Azuma H, et al. Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J Clin Invest. 2006;116(11):3070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dendreon, Maker of Prostate Cancer Drug Provenge, Files for Bankruptcy - The New York Times [Internet]. [cited 2017 Jun 21]. Available from: https://dealbook.nytimes.com/2014/11/10/dendreon-maker-of-prostate-cancer-drug-provenge-files-for-bankruptcy/

  78. Warnock DG, Bichet DG, Holida M, Goker-Alpan O, Nicholls K, Thomas M, et al. Oral migalastat HCl leads to greater systemic exposure and tissue levels of active α-galactosidase a in Fabry patients when co-administered with infused Agalsidase. Bigger BW, editor. PLoS One. 2015;10(8):e0134341.

  79. FDA reverses decision, allowing amicus to file for rare disease drug [Internet]. [cited 2017 Aug 2]. Available from: https://www.forbes.com/sites/matthewherper/2017/07/11/fda-reverses-decision-allowing-amicus-to-file-for-rare-disease-drug/#11831fe4299b

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Amalfitano DO, PhD.

Ethics declarations

Conflict of Interest

David P. W. Rastall declares no potential conflicts of interest.

Andrea Amalfitano reports grants from Muscular Dystrophy Association of USA, Acid Maltase Deficiency Association of America, Genzyme Corporation, and Venn Therapeutics. Dr. Amalfitano reports personal fees from Genzyme Corporation, Venn Therapeutics, and Etubics Corp and reports an issued patent (US #7666405).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pediatric Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastall, D.P.W., Amalfitano, A. Current and Future Treatments for Lysosomal Storage Disorders. Curr Treat Options Neurol 19, 45 (2017). https://doi.org/10.1007/s11940-017-0481-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-017-0481-2

Keywords

Navigation