Skip to main content
Log in

Substrate reduction therapy of glycosphingolipid storage disorders

  • SSIEM SYMPOSIUM 2005
  • Published:
Journal of Inherited Metabolic Disease

Summary

In the last 15 years enormous progress has been made regarding therapy of type I Gaucher disease, a severely disabling disorder characterized by intralysosomal storage of glucosylceramide in tissue macrophages. Effective enzyme replacement therapy of type I Gaucher disease, based on chronic intravenous administration of mannose-terminated recombinant human glucocerebrosidase, has been available since 1990 and has been applied in several thousand patients without serious adverse effects. An alternative therapeutic approach, so-called substrate reduction therapy, is based on partial reduction of the synthesis of glucosylceramide and hence of subsequent metabolites. Oral administration of an inhibitor of glucosylceramide synthesis (N-butyldeoxynojirimycin, registered in Europe since 2002 as miglustat (Zavesca)), is effective in reversing clinical symptoms in type I Gaucher patients with mild to moderate disease manifestations. The growing long-term experience with substrate reduction therapy indicates that this treatment is also without major adverse effects. Substrate reduction therapy, in conjunction with enzyme replacement therapy, may play an important role in the future clinical management of patients suffering from type I Gaucher disease. Clinical trials are under way that should reveal the value of substrate reduction for maintenance therapy of type I Gaucher disease and for treatment of neuronopathic variants of Gaucher disease, Niemann–Pick disease type C, late-onset Tay–Sachs disease and Sandhoff disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe A, Gregory S, Lee L, et al (2000) Reduction of globotriaosylceramide in Fabry disease mice by substrate deprivation. J Clin Invest 105: 1563–1567.

    PubMed  CAS  Google Scholar 

  • Abe A, Wild S, Lee W, Shayman J (2001) Agents for the treatment of glycosphingolipid storage disorders. Curr Drug Metab 2: 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Aerts JMFG, Hollak CEM (1997) Plasma and metabolic abnormalities in Gaucher's disease. Baillières Clin Haematol 10: 691–709.

    PubMed  CAS  Google Scholar 

  • Aerts JM, van Weely S, Boot R, Hollak CE, Tager JM (1993) Pathogenesis of lysosomal storage disorders as illustrated by Gaucher disease. J Inherit Met Dis 16: 288–291.

    Article  CAS  Google Scholar 

  • Aguilera B, Ghauharali-van der Vlugt K, Helmond MT, et al (2003) Transglycosidase activity of chitotriosidase: improved enzymatic assay for the human macrophage chitinase. J Biol Chem 278: 40911–40916.

    Article  PubMed  CAS  Google Scholar 

  • Andersson U, Butters TD, Dwek RA, Platt FM (2000) N-butyldeoxygalactonojirimycin: a more selective inhibitor of glycosphingolipid biosynthesis than N-butyldeoxynojirimycin, in vitro and in vivo. Biochem Pharmacol 49: 821–829.

    Article  Google Scholar 

  • Andersson U, Smith D, Jeyakumar M, et al (2004) Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease. Neurobiol Dis 16: 506–515.

    Article  PubMed  CAS  Google Scholar 

  • Barranger JA, Ginns EI (1989) Glycosylceramide lipidosis: Gaucher disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 1677–1698.

    Google Scholar 

  • Barranger JA, O'Rourke E (2001) Lessons learned from the development of enzyme therapy for Gaucher disease. J Inherit Met Dis 24(Supplement 2): 89–96.

    Article  CAS  Google Scholar 

  • Barton NW, Brady RO, Dambrosia JM, et al (1991) Replacement therapy for inherited enzyme deficiency: macrophage-targeted glucocerebrosidase for Gaucher's disease. N Engl J Med 324: 1464–1470.

    Article  PubMed  CAS  Google Scholar 

  • Beutler E, Grabowski GA (1995) Gaucher's disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 2641–2670.

    Google Scholar 

  • Boot RG, Renkema GH, Strijland A, van Zonneveld AJ, Muysers AO, Aerts JMFG (1995) Cloning of cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J Biol Chem 270: 26252–26256.

    Article  PubMed  CAS  Google Scholar 

  • Boot RG, Renkema GH, Verhoek M, et al (1998) The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem 273: 25680–25685.

    Article  PubMed  CAS  Google Scholar 

  • Boot RG, Verhoek M, de Fost M, et al (2004) Marked elevation of the chemokine CCL18/PARC in Gaucher disease: a novel surrogate marker for assessing therapeutic intervention. Blood 103: 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Boven LA, van Meurs M, Boot RG, et al (2004) Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages. Am J Clin Pathol 122:359–369.

    Article  PubMed  CAS  Google Scholar 

  • Brady RO (1997) Gaucher's disease: past, present and future. Baillière's Clin Haematol 10: 621–634.

    CAS  Google Scholar 

  • Brady RO, Kanfer JN, Bradley RM, Shapiro D (1966) Demonstration of a deficiency of glucocerebroside-cleaving enzyme in Gaucher's disease. J Clin Invest 45: 1112–1115.

    PubMed  CAS  Google Scholar 

  • Cabrera-Salazar MA, O'Rourke E, Henderson N, Wessel H, Barranger JA (2004) Correlation of surrogate markers of Gaucher disease. Implications for long-term follow up of enzyme replacement therapy. Clin Chim Acta 344: 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Conradi NG, Sourander P, Nilsson O, Svennerholm L, Erikson A (1984) Neuropathology of the Norrbottnian type of Gaucher disease. Morphological and biochemical studies. Acta Neuropathol (Berl) 65: 99–109.

    Article  CAS  Google Scholar 

  • Cox TM (2001) Gaucher disease: understanding the molecular pathogenesis of sphingolipidoses. J Inherit Met Dis 24(Supplement 2): 106–121.

    CAS  Google Scholar 

  • Cox TM, Schofield JP (1997) Gaucher's disease: clinical features and natural history. Baillière's Clin Hematol 10: 657–689.

    CAS  Google Scholar 

  • Cox TM, Aerts JM, Andria G, et al (2003) Advisory council to the european working group on Gaucher disease The role of the iminosugar N-butyldeoxynojirimycin (miglustat) in the management of type I (non-neuronopathic) Gaucher disease: a position statement. J Inherit Metab Dis 26: 513–526.

    Article  PubMed  CAS  Google Scholar 

  • Deegan PB, Moran MT, McFarlane I, et al (2005) Clinical evaluation of chemokine and enzymatic biomarkers of Gaucher disease. Blood Cells Mol Dis 35: 259–267.

    Article  PubMed  CAS  Google Scholar 

  • De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F (1955) Tissue fractionation studies. Intracellular distribution patterns of enzymes in rat liver tissue. Biochem J 60: 604–617.

    Google Scholar 

  • Elstein D, Hollak C, Aerts JM, et al (2004) Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) in type I Gaucher disease. J Inherit Metab Dis 27: 757–766.

    Article  PubMed  CAS  Google Scholar 

  • Erikson A (2001) Remaining problems in the management of patient with Gaucher disease. J Inherit Met Dis 24(Supplement 2): 122–126.

    Article  Google Scholar 

  • Furbish FS, Steer CJ, Krett NL, Barranger JA (1981) Uptake and distribution of placental glucocerebrosidase in rat hepatic cells and effects of sequential deglycosylation. Biochim Biophys Acta 673: 425–434.

    PubMed  CAS  Google Scholar 

  • Fusetti F, von Moeller H, Houston D, et al (2002) Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins. J Biol Chem 277: 25537–25544.

    Article  PubMed  CAS  Google Scholar 

  • Grabowski GA, Barton NW, Pastores G, et al (1995) Enzyme therapy in type I Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann Intern Med 122: 33–39.

    PubMed  CAS  Google Scholar 

  • Heitner R, Elstein D, Aerts J, Weely S, Zimran A (2002) Low-dose N-butyldeoxynojirimycin (OGT 918) for type I Gaucher disease. Blood Cells Mol Dis 28: 127–133.

    Article  PubMed  Google Scholar 

  • Hers HG (1965) Progress in gastroenterology: inborn lysosomal diseases. Gastroenterology 48: 625–633.

    PubMed  CAS  Google Scholar 

  • Hollak CEM, Aerts JMFG (2001) Clinically relevant therapeutic endpoints in type I Gaucher disease. J Inherit Met Dis 24(Supplement 2): 97–105.

    Article  CAS  Google Scholar 

  • Hollak CEM, van Weely S, van Oers MHJ, Aerts JMFG (1994) Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest 93: 1288–1292.

    PubMed  CAS  Google Scholar 

  • Hollak CEM, Aerts JMFG, Goudsmit ER, et al (1995) Individualised low-dose alglucerase therapy for type I Gaucher's disease. Lancet 345: 1474–1478.

    Article  PubMed  CAS  Google Scholar 

  • Hollak CEM, Maas M, Akkerman E, den Heeten A, Aerts H (2002) Dixon quantitative chemical shift imaging is a sensitive tool for the evaluation of bone marrow response to enzyme supplementation in type I Gaucher disease. Bloods Cells Mol Dis 27: 1005–1012.

    Article  Google Scholar 

  • Heitner R, Elstein D, Aerts J, Weely S, Zimran A (2002) Low-dose N-butyldeoxynojirimycin (OGT 918) for type I Gaucher disease. Blood Cells Mol Dis 28: 127–133.

    Article  PubMed  Google Scholar 

  • Jeyakumar M, Butters TD, Cortina-Borja M, et al (1999) Delayed symptom onset and increased life expectancy in Sandhoff mice treated with N-butyl-deoxynojirimycin. Proc Natl Acad Sci USA 96: 6388–6393.

    Article  PubMed  CAS  Google Scholar 

  • Jeyakumar M, Thomas R, Elliot-Smith E, et al (2003) Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126: 974–987.

    Article  PubMed  CAS  Google Scholar 

  • Jeyakumar M, Smith DA, Williams IM, et al (2004) NSAIDs increase survival in the Sandhoff disease mouse: synergy with N-butyldeoxynojirimycin. Ann Neurol 56: 642–649.

    Article  PubMed  CAS  Google Scholar 

  • Jeyakumar M, Dwek RA, Butters TD, Platt FM (2005) Storage solutions: treating lysosomal disorders of the brain. Nat Rev Neurosci 6: 713–725.

    PubMed  Google Scholar 

  • Jonsson LMV, Murray GJ, Sorrell SH, et al (1987) Biosynthesis and maturation of glucocerebrosidase in Gaucher fibroblasts. Eur J Biochem 164: 171–179.

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Hoppel BE, Gerard EL, et al (1992) Quantitative chemical shift imaging of vertebral bone marrow in patients with Gaucher disease. Radiology 182: 451–455.

    PubMed  CAS  Google Scholar 

  • Kasperzyk JL, D'Azzo A, Platt FM, Alroy J, Seyfried TN (2005) Substrate reduction reduces gangliosides in postnatal cerebrum-brainstem and cerebellum in GM1 gangliosidosis mice. J Lipid Res 46: 744–751.

    Article  PubMed  CAS  Google Scholar 

  • Lachmann R (2003) Miglustat. Oxford GlycoSciences/Actelion. Curr Opin Investig Drugs 4: 472–479.

    PubMed  CAS  Google Scholar 

  • Lachmann RH, Grant IR, Halsall D, Cox TM (2004a) Twin pairs showing discordance of phenotype in adult Gaucher's disease. QJM 97: 199–204.

    Article  CAS  Google Scholar 

  • Lachmann RH, te Vruchte D, Lloyd-Evans E, et al (2004b) Treatment with miglustat reverses the lipid-trafficking defect in Niemann—Pick disease type C. Neurobiol Dis 16: 654–658.

    Article  CAS  Google Scholar 

  • Lee L, Abe A, Shayman JA (1999) Improved inhibitors of glucosylceramide synthase. J Biol Chem 274: 146662–14665.

    Google Scholar 

  • Linehan SA, Martinez-Pomares L, Stahl PD, Gordon S (1999) Mannose receptor and its putative ligands in normal murine lymphoid and nonlymphoid organs. In situ expression of mannose receptor by selected macrophages, endothelial cells, perivascular microglia and mesanglial cells, but not dendritic cells. J Exp Med 189: 1961–1972.

    Article  PubMed  CAS  Google Scholar 

  • Meikle PF, Hopwood JJ, Clague AE, Carety WF (1999) Prevalence of lysosomal storage disorders. JAMA 281: 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Moran MT, Schofield JP, Hayman AR, Shi G-P, Young E, Cox TM (2000) Pathologic gene expression in Gaucher disease: upregulation of cysteine proteinases including osteoclastic cathepsin K. Blood 96: 1969–1978.

    PubMed  CAS  Google Scholar 

  • Neufeld EF (1991) Lysosomal storage disorders. Annu Rev Biochem 60: 257–280.

    Article  PubMed  CAS  Google Scholar 

  • Overkleeft HS, Renkema GH, Neele J, et al (1998) Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase. J Biol Chem 273: 26522–26527.

    Article  PubMed  CAS  Google Scholar 

  • Pastores GM, Barnett NL, Kolodny EH (2005) An open-label, noncomparative study of miglustat in type I Gaucher disease: efficacy and tolerability over 24 months of treatment. Clin Ther 27: 1215–1227.

    Article  PubMed  CAS  Google Scholar 

  • Patrick AD (1965) A deficiency of glucocerebrosidase in Gaucher's disease. Biochem J 97: 17c–18c.

    CAS  Google Scholar 

  • Patterson MC, Platt F (2004) Therapy of Niemann—Pick disease, type C. Biochim Biophys Acta 1685: 77–82.

    PubMed  CAS  Google Scholar 

  • Platt FM, Neises GR, Dwek RA, Butters TD (1994) N-butyl-deoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J Biol Chem 269: 8362–8365.

    PubMed  CAS  Google Scholar 

  • Platt FM, Neises GR, Reinkensmeier G, et al (1997) Prevention of lysosomal storage in Tay—Sachs mice treated with N-butyldeoxynojirimycin. Science 276: 428–431.

    Article  PubMed  CAS  Google Scholar 

  • Poorthuis BJHM, Wevers RA, Kleijer WJ, et al (1999) The frequency of lysosomal storage diseases in The Netherlands. Hum Genet 105: 151–156.

    PubMed  CAS  Google Scholar 

  • Proia RL, Wu YP (2004) Blood to brain to the rescue. J Clin Invest 113: 1108–1110.

    Article  PubMed  CAS  Google Scholar 

  • Radin NS (1996) Treatment of Gaucher disease with an enzyme inhibitor. Glycoconj J 13: 153–157.

    Article  PubMed  CAS  Google Scholar 

  • Rao FV, Houston DR, Boot RG, Aerts JM, Sakuda S, van Aalten DM (2003) Crystal structures of allosamidin derivatives in complex with human macrophage chitinase. J Biol Chem 278: 20110–20116.

    Article  PubMed  CAS  Google Scholar 

  • Renkema GH, Boot RG, Muysers AO, Donker-Koopman W, Aerts, JMFG (1995) Purification and characterisation of human chitotriosidase, a novel member of the chitinase family of proteins. J Biol Chem 270: 2198–2202.

    Article  PubMed  CAS  Google Scholar 

  • Richter J, Karlsson S (2001) Clinical gene therapy in hematology: past and future. Int J Hematol 73: 162–169.

    Article  PubMed  CAS  Google Scholar 

  • Rijnboutt S, Aerts JMFG, Geuze HJ, Tager JM, Strous GJ (1991) Mannose-6-phosphate independent membrane association and maturation of cathepsin D, glucocerebrosidase and sphingolipid-activating protein in HepG2 cells. J Biol Chem 266: 4862–4868.

    PubMed  CAS  Google Scholar 

  • Ringden O, Groth CG, Erikson A, Granqvist S, Mansson JE, Sparrelid E (1995) Ten years' experience of bone marrow transplanatation for Gaucher disease. Transplantation 56: 864–870.

    Google Scholar 

  • Shayman J, Abe A, Lee L, Wild S, Hiraoki M (2002) Small molecule inhibitors of glucosylceramide synthase for the treatment of Gaucher disease. Clin Perspect Lysosomal Storage Disord 10: 5–13.

    Google Scholar 

  • Shen C, Bullens D, Kasran A, et al (2004) Inhibition of glycolipid biosynthesis by N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin protects against the inflammatory response in hapten-induced colitis. Int Immunopharmacol 4: 939–951.

    Article  PubMed  CAS  Google Scholar 

  • Sidransky E (2004) Gaucher disease: complexity in a “simple” disorder. Mol Genet Metab 83: 6–15.

    Article  PubMed  CAS  Google Scholar 

  • Van Eijk M, van Roomen CP, Renkema GH, et al (2005) Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. Int Immunol 17: 1505–1512.

    Article  PubMed  Google Scholar 

  • Van Weely S, Aerts JMFG, van Leeuwen MB, et al (1990) Function of oligosaccharide modification in glucocerebrosidase, a membrane-associated lysosomal hydrolase. Eur J Biochem 191: 669–677.

    Article  PubMed  Google Scholar 

  • Van Weely S, van den Berg M, Barranger JA, Sa Miranda MC, Tager JM, Aerts JMFG (1993) Role of pH in determining the cell-type specific residual activity of glucocerebrosidase in type I Gaucher disease. J Clin Invest 91: 1167–1175.

    Article  PubMed  Google Scholar 

  • Vellodi A, Bembi B, de Villemeur TB, et al (2001) Management of neuronopathic Gaucher disease: a European consensus. J Inherit Metab Dis 24: 319–327.

    Article  PubMed  CAS  Google Scholar 

  • Vellodi A, Foo Y, Cole TJ (2005) Evaluation of three biochemical markers in the monitoring of Gaucher disease. J Inherit Metab Dis 28: 585–592.

    Article  PubMed  CAS  Google Scholar 

  • Vunnam R, Radin N (1980) Analogs of ceramide that inhibit glucocerebroside synthetase in mouse brain. Chem Phys Lipids 26: 265–278.

    Article  PubMed  CAS  Google Scholar 

  • Walkley S (2003) Neurobiology and cellular pathogenesis of glycolipid storage diseases. Philos Trans R Soc Lond B Biol Sci 358: 893–904.

    Article  PubMed  CAS  Google Scholar 

  • Weinreb NJ, Barranger JA, Charrow J, Grabowski GA, Mankin HJ, Mistry P (2005) Guidance on the use of miglustat for treating patients with type I Gaucher disease. Am J Hematol 80: 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Wu YP, Proia RL (2004) Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice. Proc Natl Acad Sci USA 101: 8425–8430.

    Article  PubMed  CAS  Google Scholar 

  • Zervas M, Somers KL, Thrall MA, Walkley SU (2001) Critical role for glycosphingolipids in Niemann—Pick disease type C. Curr Biol 11: 1283–1287.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes M. F. G. Aerts.

Additional information

Communicating editor: Jean-Marie Saudubray

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aerts, J.M.F.G., Hollak, C.E.M., Boot, R.G. et al. Substrate reduction therapy of glycosphingolipid storage disorders. J Inherit Metab Dis 29, 449–456 (2006). https://doi.org/10.1007/s10545-006-0272-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-006-0272-5

Keywords

Navigation