Skip to main content

Advertisement

Log in

Skeletal Functions of Voltage Sensitive Calcium Channels

  • Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Summary

Voltage-sensitive calcium channels (VSCCs) are ubiquitous multimeric protein complexes that are necessary for the regulation of numerous physiological processes. VSCCs regulate calcium influx and various intracellular processes including muscle contraction, neurotransmission, hormone secretion, and gene transcription, with function specificity defined by the channel’s subunits and tissue location.

The functions of VSCCs in bone are often overlooked since bone is not considered an electrically excitable tissue. However, skeletal homeostasis and adaptation relies heavily on VSCCs. Inhibition or deletion of VSCCs decreases osteogenesis, impairs skeletal structure, and impedes anabolic responses to mechanical loading.

Recent Findings

While the functions of VSCCs in osteoclasts are less clear, VSCCs have distinct but complementary functions in osteoblasts and osteocytes.

Purpose of Review

This review details the structure, function, and nomenclature of VSCCs, followed by a comprehensive description of the known functions of VSCCs in bone cells and their regulation of bone development, bone formation, and mechanotransduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57(4):411–25. https://doi.org/10.1124/pr.57.4.5.

    Article  CAS  PubMed  Google Scholar 

  2. Yu FH, Catterall WA. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE. 2004;2004(253):re15. doi:https://doi.org/10.1126/stke.2532004re15.

  3. Arikkath J, Campbell KP. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol 2003;13(3):298–307. doi:S0959438803000667 [pii].

  4. Garcia K, Nabhani T, Garcia J. The calcium channel alpha2/delta1 subunit is involved in extracellular signalling. J Physiol. 2008;586(3):727–38. https://doi.org/10.1113/jphysiol.2007.147959.

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci U S A. 1987;84(15):5478–82. https://doi.org/10.1073/pnas.84.15.5478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Castellano A, Wei X, Birnbaumer L, Perez-Reyes E. Cloning and expression of a neuronal calcium channel beta subunit. J Biol Chem. 1993;268(17):12359–66.

    Article  CAS  Google Scholar 

  7. Hullin R, Singer-Lahat D, Freichel M, Biel M, Dascal N, Hofmann F, et al. Calcium channel beta subunit heterogeneity: functional expression of cloned cDNA from heart, aorta and brain. EMBO J. 1992;11(3):885–90.

    Article  CAS  Google Scholar 

  8. Perezreyes E, Schneider T. Calcium channels - structure, function, and classification. Drug Develop Res. 1994;33(3):295–318. doi:DOI https://doi.org/10.1002/ddr.430330311.

  9. Pragnell M, De Waard M, Mori Y, Tanabe T, Snutch TP, Campbell KP. Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature. 1994;368(6466):67–70. https://doi.org/10.1038/368067a0.

    Article  CAS  PubMed  Google Scholar 

  10. Ellinor PT, Zhang JF, Randall AD, Zhou M, Schwarz TL, Tsien RW, et al. Functional expression of a rapidly inactivating neuronal calcium channel. Nature. 1993;363(6428):455–8. https://doi.org/10.1038/363455a0.

    Article  CAS  PubMed  Google Scholar 

  11. Williams ME, Feldman DH, McCue AF, Brenner R, Velicelebi G, Ellis SB, et al. Structure and functional expression of alpha 1, alpha 2, and beta subunits of a novel human neuronal calcium channel subtype. Neuron. 1992;8(1):71–84. https://doi.org/10.1016/0896-6273(92)90109-q.

    Article  CAS  PubMed  Google Scholar 

  12. Varadi G, Lory P, Schultz D, Varadi M, Schwartz A. Acceleration of activation and inactivation by the beta subunit of the skeletal muscle calcium channel. Nature. 1991;352(6331):159–62. https://doi.org/10.1038/352159a0.

    Article  CAS  PubMed  Google Scholar 

  13. De Waard M, Pragnell M, Campbell KP. Ca2+ channel regulation by a conserved beta subunit domain. Neuron 1994;13(2):495–503. doi:0896-6273(94)90363-8 [pii].

  14. Brice NL, Berrow NS, Campbell V, Page KM, Brickley K, Tedder I, et al. Importance of the different beta subunits in the membrane expression of the alpha1A and alpha2 calcium channel subunits: studies using a depolarization-sensitive alpha1A antibody. Eur J Neurosci. 1997;9(4):749–59. https://doi.org/10.1111/j.1460-9568.1997.tb01423.x.

    Article  CAS  PubMed  Google Scholar 

  15. Bichet D, Cornet V, Geib S, Carlier E, Volsen S, Hoshi T, Mori Y., de Waard M. The I-II loop of the Ca2+ channel alpha1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron 2000;25(1):177–190. doi:S0896-6273(00)80881-8 [pii].

  16. Dolphin AC. Beta subunits of voltage-gated calcium channels. J Bioenerg Biomembr. 2003;35(6):599–620. https://doi.org/10.1023/b:jobb.0000008026.37790.5a.

    Article  CAS  PubMed  Google Scholar 

  17. Chu PJ, Robertson HM, Best PM. Calcium channel gamma subunits provide insights into the evolution of this gene family. Gene 2001;280(1–2):37–48. doi:S0378-1119(01)00738-7 [pii].

  18. Burgess DL, Gefrides LA, Foreman PJ, Noebels JL. A cluster of three novel Ca2+ channel gamma subunit genes on chromosome 19q13.4: evolution and expression profile of the gamma subunit gene family. Genomics 2001;71(3):339–350. doi:https://doi.org/10.1006/geno.2000.6440 S0888-7543(00)96440-1 [pii].

  19. Klugbauer N, Dai S, Specht V, Lacinova L, Marais E, Bohn G et al. A family of gamma-like calcium channel subunits. FEBS Lett 2000;470(2):189–197. doi:S0014-5793(00)01306-5 [pii].

  20. Rousset M, Cens T, Restituito S, Barrere C, Black JL 3rd, McEnery MW, et al. Functional roles of gamma2, gamma3 and gamma4, three new Ca2+ channel subunits, in P/Q-type Ca2+ channel expressed in Xenopus oocytes. J Physiol. 2001;532(Pt 3):583–93. https://doi.org/10.1111/j.1469-7793.2001.0583e.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moss FJ, Viard P, Davies A, Bertaso F, Page KM, Graham A, et al. The novel product of a five-exon stargazin-related gene abolishes Ca(V)2.2 calcium channel expression. EMBO J. 2002;21(7):1514–23. https://doi.org/10.1093/emboj/21.7.1514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arikkath J, Chen CC, Ahern C, Allamand V, Flanagan JD, Coronado R, Gregg RG, Campbell KP Gamma 1 subunit interactions within the skeletal muscle L-type voltage-gated calcium channels. J Biol Chem 2003;278(2):1212–1219. doi:https://doi.org/10.1074/jbc.M208689200 M208689200 [pii].

  23. Kang MG, Chen CC, Felix R, Letts VA, Frankel WN, Mori Y, Campbell KP Biochemical and biophysical evidence for gamma 2 subunit association with neuronal voltage-activated Ca2+ channels. J Biol Chem 2001;276(35):32917–32924. doi:https://doi.org/10.1074/jbc.M100787200 M100787200 [pii].

  24. Klugbauer N, Lacinova L, Marais E, Hobom M, Hofmann F. Molecular diversity of the calcium channel alpha2delta subunit. J Neurosci. 1999;19(2):684–91.

    Article  CAS  Google Scholar 

  25. Barclay J, Balaguero N, Mione M, Ackerman SL, Letts VA, Brodbeck J, et al. Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J Neurosci. 2001;21(16):6095–104.

    Article  CAS  Google Scholar 

  26. Qin N, Yagel S, Momplaisir ML, Codd EE, D'Andrea MR. Molecular cloning and characterization of the human voltage-gated calcium channel alpha(2)delta-4 subunit. Molecular Pharmacology. 2002;62(3):485–96. doi:UNSP 1542/1003845 DOI https://doi.org/10.1124/mol.62.3.485.

  27. Wycisk KA, Zeitz C, Feil S, Wittmer M, Forster U, Neidhardt J et al. Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am J Hum Genet. 2006;79(5):973–7. doi:Doi https://doi.org/10.1086/508944.

  28. Jay SD, Sharp AH, Kahl SD, Vedvick TS, Harpold MM, Campbell KP. Structural characterization of the dihydropyridine-sensitive calcium channel alpha 2-subunit and the associated delta peptides. J Biol Chem. 1991;266(5):3287–93.

    Article  CAS  Google Scholar 

  29. Davies A, Kadurin I, Alvarez-Laviada A, Douglas L, Nieto-Rostro M, Bauer CS, et al. The alpha2delta subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc Natl Acad Sci U S A. 2010;107(4):1654–9. https://doi.org/10.1073/pnas.0908735107.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M et al. Structure of the voltage-gated calcium channel Cav1.1 complex. Science. 2015;350(6267):aad2395. doi:https://doi.org/10.1126/science.aad2395.

  31. Bannister RA, Beam KG. Ca(V)1.1: the atypical prototypical voltage-gated Ca(2)(+) channel. Biochim Biophys Acta. 2013;1828(7):1587–97. https://doi.org/10.1016/j.bbamem.2012.09.007.

    Article  CAS  PubMed  Google Scholar 

  32. Dolphin AC. The alpha2delta subunits of voltage-gated calcium channels. Biochim Biophys Acta. 2013;1828(7):1541–9. https://doi.org/10.1016/j.bbamem.2012.11.019.

    Article  CAS  PubMed  Google Scholar 

  33. Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell. 2002;13(10):3369–87. https://doi.org/10.1091/mbc.e02-05-0259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Canti C, Nieto-Rostro M, Foucault I, Heblich F, Wratten J, Richards MW, et al. The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of alpha2delta subunits is key to trafficking voltage-gated Ca2+ channels. Proc Natl Acad Sci U S A. 2005;102(32):11230–5. https://doi.org/10.1073/pnas.0504183102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tran-Van-Minh A, Dolphin AC. The alpha2delta ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit alpha2delta-2. J Neurosci. 2010;30(38):12856–67. https://doi.org/10.1523/JNEUROSCI.2700-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gee NS, Brown JP, Dissanayake VU, Offord J, Thurlow R, Woodruff GN. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem. 1996;271(10):5768–76. https://doi.org/10.1074/jbc.271.10.5768.

    Article  CAS  PubMed  Google Scholar 

  37. Davies A, Douglas L, Hendrich J, Wratten J. Tran Van Minh A, Foucault I et al. The calcium channel alpha2delta-2 subunit partitions with CaV2.1 into lipid rafts in cerebellum: implications for localization and function. J Neurosci. 2006;26(34):8748–57. https://doi.org/10.1523/JNEUROSCI.2764-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Field MJ, Cox PJ, Stott E, Melrose H, Offord J, Su TZ, et al. Identification of the alpha2-delta-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc Natl Acad Sci U S A. 2006;103(46):17537–42. https://doi.org/10.1073/pnas.0409066103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martin DJ, McClelland D, Herd MB, Sutton KG, Hall MD, Lee K, et al. Gabapentin-mediated inhibition of voltage-activated Ca2+ channel currents in cultured sensory neurones is dependent on culture conditions and channel subunit expression. Neuropharmacology. 2002;42(3):353–66. https://doi.org/10.1016/s0028-3908(01)00181-2.

    Article  CAS  PubMed  Google Scholar 

  40. Hendrich J, Van Minh AT, Heblich F, Nieto-Rostro M, Watschinger K, Striessnig J, et al. Pharmacological disruption of calcium channel trafficking by the alpha2delta ligand gabapentin. Proc Natl Acad Sci U S A. 2008;105(9):3628–33. https://doi.org/10.1073/pnas.0708930105.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hess P. Calcium channels in vertebrate cells. Annu Rev Neurosci. 1990;13:337–56. https://doi.org/10.1146/annurev.ne.13.030190.002005.

    Article  CAS  PubMed  Google Scholar 

  42. Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011;3(8):a003947. https://doi.org/10.1101/cshperspect.a003947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dolphin AC. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol. 2016;594(19):5369–90. https://doi.org/10.1113/JP272262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA Nomenclature of voltage-gated calcium channels. Neuron 2000;25(3):533–535. doi:S0896-6273(00)81057-0 [pii].

  45. Nowycky MC, Fox AP, Tsien RW. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985;316(6027):440–3. https://doi.org/10.1038/316440a0.

    Article  CAS  PubMed  Google Scholar 

  46. Reuter H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature. 1983;301(5901):569–74. https://doi.org/10.1038/301569a0.

    Article  CAS  PubMed  Google Scholar 

  47. Carbone E, Lux HD. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature. 1984;310(5977):501–2. https://doi.org/10.1038/310501a0.

    Article  CAS  PubMed  Google Scholar 

  48. Swandulla D, Armstrong CM. Fast-deactivating calcium channels in chick sensory neurons. J Gen Physiol. 1988;92(2):197–218. https://doi.org/10.1085/jgp.92.2.197.

    Article  CAS  PubMed  Google Scholar 

  49. Fedulova SA, Kostyuk PG, Veselovsky NS. Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. J Physiol. 1985;359:431–46. https://doi.org/10.1113/jphysiol.1985.sp015594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lacinova L, Klugbauer N, Hofmann F. Low voltage activated calcium channels: from genes to function. Gen Physiol Biophys. 2000;19(2):121–36.

    CAS  PubMed  Google Scholar 

  51. Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 2003;83(1):117–61. https://doi.org/10.1152/physrev.00018.2002.

    Article  CAS  PubMed  Google Scholar 

  52. Huang L, Keyser BM, Tagmose TM, Hansen JB, Taylor JT, Zhuang H, Zhang M, Ragsdale DS, Li M NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluo ro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J Pharmacol Exp Ther 2004;309(1):193–199. doi:https://doi.org/10.1124/jpet.103.060814 jpet.103.060814 [pii].

  53. McCleskey EW, Fox AP, Feldman DH, Cruz LJ, Olivera BM, Tsien RW, et al. Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc Natl Acad Sci U S A. 1987;84(12):4327–31. https://doi.org/10.1073/pnas.84.12.4327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP. Multiple types of neuronal calcium channels and their selective modulation. Trends in Neurosciences. 1988;11(10):431–8. doi:Doi https://doi.org/10.1016/0166-2236(88)90194-4.

  55. Randall A, Tsien RW. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci. 1995;15(4):2995–3012.

    Article  CAS  Google Scholar 

  56. Mintz IM, Adams ME, Bean BP. P-type calcium channels in rat central and peripheral neurons. Neuron. 1992;9(1):85–95. https://doi.org/10.1016/0896-6273(92)90223-z.

    Article  CAS  PubMed  Google Scholar 

  57. Bergh JJ, Shao Y, Puente E, Duncan RL, Farach-Carson MC. Osteoblast Ca(2+) permeability and voltage-sensitive Ca(2+) channel expression is temporally regulated by 1,25-dihydroxyvitamin D(3). Am J Physiol Cell Physiol. 2006;290(3):C822–31.

    Article  CAS  Google Scholar 

  58. Paic F, Igwe JC, Nori R, Kronenberg MS, Franceschetti T, Harrington P, et al. Identification of differentially expressed genes between osteoblasts and osteocytes. Bone. 2009;45(4):682–92. https://doi.org/10.1016/j.bone.2009.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thompson WR, Majid AS, Czymmek KJ, Ruff AL, Garcia J, Duncan RL, et al. Association of the alpha(2)delta(1) subunit with Ca(v)3.2 enhances membrane expression and regulates mechanically induced ATP release in MLO-Y4 osteocytes. J Bone Miner Res. 2011;26(9):2125–39. https://doi.org/10.1002/jbmr.437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chesnoy-Marchais D, Fritsch J. Voltage-gated sodium and calcium currents in rat osteoblasts. J Physiol. 1988;398:291–311.

    Article  CAS  Google Scholar 

  61. Guggino SE, Lajeunesse D, Wagner JA, Snyder SH. Bone remodeling signaled by a dihydropyridine- and phenylalkylamine-sensitive calcium channel. Proc Natl Acad Sci U S A. 1989;86(8):2957–60. https://doi.org/10.1073/pnas.86.8.2957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grygorczyk C, Grygorczyk R, Ferrier J. Osteoblastic cells have L-type calcium channels. Bone and mineral. 1989;7(2):137–48.

    Article  CAS  Google Scholar 

  63. Gu Y, Preston MR, el Haj AJ, Hamid J, Zamponi GW, Howl J, et al. Osteoblasts derived from load-bearing bones of the rat express both L- and T-like voltage-operated calcium channels and mRNA for alpha 1C, alpha 1D and alpha 1G subunits. Pflugers Arch. 1999;438(4):553–60.

    CAS  PubMed  Google Scholar 

  64. el Haj AJ, Walker LM, Preston MR, Publicover SJ. Mechanotransduction pathways in bone: calcium fluxes and the role of voltage-operated calcium channels. Medical & biological engineering & computing. 1999;37(3):403–9.

    Article  Google Scholar 

  65. Loza JC, Carpio LC, Bradford PG, Dziak R. Molecular characterization of the alpha1 subunit of the L type voltage calcium channel expressed in rat calvarial osteoblasts. J Bone Miner Res. 1999;14(3):386–95.

    Article  CAS  Google Scholar 

  66. Barry EL. Expression of mRNAs for the alpha 1 subunit of voltage-gated calcium channels in human osteoblast-like cell lines and in normal human osteoblasts. Calcif Tissue Int. 2000;66(2):145–50.

    Article  CAS  Google Scholar 

  67. Li B, Chik CL, Taniguchi N, Ho AK, Karpinski E. 24,25(OH)2 vitamin D3 modulates the L-type Ca2+ channel current in UMR 106 cells: involvement of protein kinase a and protein kinase C. Cell Calcium. 1996;19(3):193–200.

    Article  CAS  Google Scholar 

  68. Li J, Duncan RL, Burr DB, Turner CH. L-type calcium channels mediate mechanically induced bone formation in vivo. J Bone Miner Res. 2002;17(10):1795–800.

    Article  CAS  Google Scholar 

  69. Meszaros JG, Karin NJ, Farach-Carson MC. Voltage-sensitive calcium channels in osteoblasts: mediators of plasma membrane signalling events. Connect Tissue Res. 1996;35(1–4):107–11.

    Article  CAS  Google Scholar 

  70. Wang XT, Nagaba S, Nagaba Y, Leung SW, Wang J, Qiu W, et al. Cardiac L-type calcium channel alpha 1-subunit is increased by cyclic adenosine monophosphate: messenger RNA and protein expression in intact bone. J Bone Miner Res. 2000;15(7):1275–85. https://doi.org/10.1359/jbmr.2000.15.7.1275.

    Article  CAS  PubMed  Google Scholar 

  71. Cao C, Ren Y, Barnett AS, Mirando AJ, Rouse D, Mun SH et al. Increased Ca2+ signaling through CaV1.2 promotes bone formation and prevents estrogen deficiency-induced bone loss. JCI Insight. 2017;2(22). doi:https://doi.org/10.1172/jci.insight.95512.

  72. Bergh JJ, Shao Y, Akanbi K, Farach-Carson MC. Rodent osteoblastic cells express voltage-sensitive calcium channels lacking a gamma subunit. Calcif Tissue Int. 2003;73(5):502–10. https://doi.org/10.1007/s00223-002-0016-y.

    Article  PubMed  Google Scholar 

  73. Meszaros JG, Karin NJ, Akanbi K, Farach-Carson MC. Down-regulation of L-type Ca2+ channel transcript levels by 1,25-dihyroxyvitamin D3. Osteoblastic cells express L-type alpha1C Ca2+ channel isoforms. J Biol Chem. 1996;271(51):32981–5.

    Article  CAS  Google Scholar 

  74. Duncan RL, Akanbi KA, Farach-Carson MC. Calcium signals and calcium channels in osteoblastic cells. Semin Nephrol. 1998;18(2):178–90.

    CAS  PubMed  Google Scholar 

  75. Zhang J, Ryder KD, Bethel JA, Ramirez R, Duncan RL. PTH-induced actin depolymerization increases mechanosensitive channel activity to enhance mechanically stimulated Ca2+ signaling in osteoblasts. J Bone Miner Res. 2006;21(11):1729–37. https://doi.org/10.1359/jbmr.060722.

    Article  CAS  PubMed  Google Scholar 

  76. Duriez J, Flautre B, Blary MC, Hardouin P. Effects of the calcium channel blocker nifedipine on epiphyseal growth plate and bone turnover: a study in rabbit. Calcif Tissue Int. 1993;52(2):120–4.

    Article  CAS  Google Scholar 

  77. Jung H, Best M, Akkus O. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels. Bone. 2015;76:88–96. https://doi.org/10.1016/j.bone.2015.03.014.

    Article  PubMed  Google Scholar 

  78. Neve A, Corrado A, Cantatore FP. Osteocalcin: skeletal and extra-skeletal effects. J Cell Physiol. 2013;228(6):1149–53. https://doi.org/10.1002/jcp.24278.

    Article  CAS  PubMed  Google Scholar 

  79. Wu X, Itoh N, Taniguchi T, Nakanishi T, Tanaka K. Requirement of calcium and phosphate ions in expression of sodium-dependent vitamin C transporter 2 and osteopontin in MC3T3-E1 osteoblastic cells. Biochim Biophys Acta. 2003;1641(1):65–70.

    Article  CAS  Google Scholar 

  80. Katz S, Boland R, Santillan G. Purinergic (ATP) signaling stimulates JNK1 but not JNK2 MAPK in osteoblast-like cells: contribution of intracellular Ca2+ release, stress activated and L-voltage-dependent calcium influx, PKC and Src kinases. Arch Biochem Biophys. 2008;477(2):244–52.

    Article  CAS  Google Scholar 

  81. Bergh JJ, Xu Y, Farach-Carson MC. Osteoprotegerin expression and secretion are regulated by calcium influx through the L-type voltage-sensitive calcium channel. Endocrinology. 2004;145(1):426–36.

    Article  CAS  Google Scholar 

  82. Wen L, Wang Y, Wang H, Kong L, Zhang L, Chen X, et al. L-type calcium channels play a crucial role in the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 2012;424(3):439–45. https://doi.org/10.1016/j.bbrc.2012.06.128.

    Article  CAS  PubMed  Google Scholar 

  83. Fei D, Zhang Y, Wu J, Zhang H, Liu A, He X et al. Cav 1.2 regulates osteogenesis of bone marrow-derived mesenchymal stem cells via canonical Wnt pathway in age-related osteoporosis. Aging Cell. 2019;18(4):e12967. doi:https://doi.org/10.1111/acel.12967.

  84. Seisenberger C, Specht V, Welling A, Platzer J, Pfeifer A, Kuhbandner S, et al. Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (Cav1.2) calcium channel gene in the mouse. J Biol Chem. 2000;275(50):39193–9. https://doi.org/10.1074/jbc.M006467200.

    Article  CAS  PubMed  Google Scholar 

  85. Ramachandran KV, Hennessey JA, Barnett AS, Yin X, Stadt HA, Foster E, et al. Calcium influx through L-type CaV1.2 Ca2+ channels regulates mandibular development. J Clin Invest. 2013;123(4):1638–46. https://doi.org/10.1172/JCI66903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li J, Zhao L, Ferries IK, Jiang L, Desta MZ, Yu X, et al. Skeletal phenotype of mice with a null mutation in Cav 1.3 L-type calcium channel. J Musculoskelet Neuronal Interact. 2010;10(2):180–7.

    CAS  PubMed  Google Scholar 

  87. Cao C, Oswald AB, Fabella BA, Ren Y, Rodriguiz R, Trainor G, et al. The CaV1.2 L-type calcium channel regulates bone homeostasis in the middle and inner ear. Bone. 2019;125:160–8. https://doi.org/10.1016/j.bone.2019.05.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ajubi NE, Klein-Nulend J, Alblas MJ, Burger EH, Nijweide PJ. Signal transduction pathways involved in fluid flow-induced PGE(2) production by cultured osteocytes. Am J Physiol-Endocrinol Metab. 1999;276(1):E171–E8.

    Article  CAS  Google Scholar 

  89. Hung CT, Allen FD, Pollack SR, Brighton CT. Intracellular Ca2+ stores and extracellular Ca2+ are required in the real-time Ca2+ response of bone cells experiencing fluid flow. J Biomech. 1996;29(11):1411–7. https://doi.org/10.1016/0021-9290(96)84536-2.

    Article  CAS  PubMed  Google Scholar 

  90. Samnegard E, Cullen DM, Akhter MP, Kimmel DB. No effect of verapamil on the local bone response to in vivo mechanical loading. J Orthop Res. 2001;19(2):328–36. https://doi.org/10.1016/S0736-0266(00)90005-6.

    Article  CAS  PubMed  Google Scholar 

  91. Walker LM, Publicover SJ, Preston MR, Said Ahmed MA, El Haj AJ. Calcium-channel activation and matrix protein upregulation in bone cells in response to mechanical strain. J Cell Biochem. 2000;79(4):648–61.

    Article  CAS  Google Scholar 

  92. Walker LM, Holm A, Cooling L, Maxwell L, Oberg A, Sundqvist T, et al. Mechanical manipulation of bone and cartilage cells with ‘optical tweezers’. FEBS Lett. 1999;459(1):39–42.

    Article  CAS  Google Scholar 

  93. Thompson WR, Majid AS, Czymmek KJ, Ruff AL, García J, Duncan RL et al. Association of the α2δ1 subunit with Cav3.2 enhances membrane expression and regulates mechanically induced ATP release in MLO-Y4 osteocytes. Journal of Bone and Mineral Research. 2011;26(9):2125–39. doi:https://doi.org/10.1002/jbmr.437. This was the first work demonstrating a function of auxilliary subunits of VSCCs in bone. This manuscript showed that the α2δ1 subunit associates with T-type (CaV3.2) regulating both trafficking of the pore-subunit to the plasma membrane and mechanically-induced ATP release in osteocytes.

  94. Shao Y, Czymmek KJ, Jones PA, Fomin VP, Akanbi K, Duncan RL, et al. Dynamic interactions between L-type voltage-sensitive calcium channel Cav1.2 subunits and ahnak in osteoblastic cells. Am J Physiol Cell Physiol. 2009;296(5):C1067–C78. https://doi.org/10.1152/ajpcell.00427.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li J, Liu D, Ke HZ, Duncan RL, Turner CH. The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem. 2005;280(52):42952–9. https://doi.org/10.1074/jbc.M506415200.

    Article  CAS  PubMed  Google Scholar 

  96. Genetos DC, Geist DJ, Liu D, Donahue HJ, Duncan RL. Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3-E1 osteoblasts. J Bone Miner Res. 2005;20(1):41–9.

    Article  CAS  Google Scholar 

  97. Duncan RL, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int. 1995;57(5):344–58. https://doi.org/10.1007/bf00302070.

    Article  CAS  PubMed  Google Scholar 

  98. Liu D, Genetos DC, Shao Y, Geist DJ, Li J, Ke HZ, et al. Activation of extracellular-signal regulated kinase (ERK1/2) by fluid shear is Ca(2+)- and ATP-dependent in MC3T3-E1 osteoblasts. Bone. 2008;42(4):644–52.

    Article  CAS  Google Scholar 

  99. Katz S, Boland R, Santillan G. Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: involvement of mechanical stress-activated calcium influx, PKC and Src activation. Int J Biochem Cell Biol. 2006;38(12):2082–91. https://doi.org/10.1016/j.biocel.2006.05.018.

    Article  CAS  PubMed  Google Scholar 

  100. Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem. 2000;275(13):9645–52. https://doi.org/10.1074/jbc.275.13.9645.

    Article  CAS  PubMed  Google Scholar 

  101. Gallea S, Lallemand F, Atfi A, Rawadi G, Ramez V, Spinella-Jaegle S, et al. Activation of mitogen-activated protein kinase cascades is involved in regulation of bone morphogenetic protein-2-induced osteoblast differentiation in pluripotent C2C12 cells. Bone. 2001;28(5):491–8. https://doi.org/10.1016/s8756-3282(01)00415-x.

    Article  CAS  PubMed  Google Scholar 

  102. Lai CF, Chaudhary L, Fausto A, Halstead LR, Ory DS, Avioli LV, et al. Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem. 2001;276(17):14443–50. https://doi.org/10.1074/jbc.M010021200.

    Article  CAS  PubMed  Google Scholar 

  103. Lou J, Tu Y, Li S, Manske PR. Involvement of ERK in BMP-2 induced osteoblastic differentiation of mesenchymal progenitor cell line C3H10T1/2. Biochem Biophys Res Commun. 2000;268(3):757–62. https://doi.org/10.1006/bbrc.2000.2210.

    Article  CAS  PubMed  Google Scholar 

  104. Mathov I, Plotkin LI, Sgarlata CL, Leoni J, Bellido T. Extracellular signal-regulated kinases and calcium channels are involved in the proliferative effect of bisphosphonates on osteoblastic cells in vitro. J Bone Miner Res. 2001;16(11):2050–6. https://doi.org/10.1359/jbmr.2001.16.11.2050.

    Article  CAS  PubMed  Google Scholar 

  105. Fan X, Rahnert JA, Murphy TC, Nanes MS, Greenfield EM, Rubin J. Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J Cell Physiol. 2006;207(2):454–60. https://doi.org/10.1002/jcp.20581.

    Article  CAS  PubMed  Google Scholar 

  106. Rubin J, Murphy TC, Fan X, Goldschmidt M, Taylor WR. Activation of extracellular signal-regulated kinase is involved in mechanical strain inhibition of RANKL expression in bone stromal cells. J Bone Miner Res. 2002;17(8):1452–60. https://doi.org/10.1359/jbmr.2002.17.8.1452.

    Article  CAS  PubMed  Google Scholar 

  107. Arita NA, Pelaez D, Cheung HS. Activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) is needed for the TGFbeta-induced chondrogenic and osteogenic differentiation of mesenchymal stem cells. Biochem Biophys Res Commun. 2011;405(4):564–9. https://doi.org/10.1016/j.bbrc.2011.01.068.

    Article  CAS  PubMed  Google Scholar 

  108. Rubin J, Murphy TC, Zhu L, Roy E, Nanes MS, Fan X. Mechanical strain differentially regulates endothelial nitric-oxide synthase and receptor activator of nuclear kappa B ligand expression via ERK1/2 MAPK. J Biol Chem. 2003;278(36):34018–25. https://doi.org/10.1074/jbc.M302822200.

    Article  CAS  PubMed  Google Scholar 

  109. Thorsen K, Kristoffersson AO, Lerner UH, Lorentzon RP. In situ microdialysis in bone tissue. Stimulation of prostaglandin E2 release by weight-bearing mechanical loading. J Clin Invest. 1996;98(11):2446–9. https://doi.org/10.1172/JCI119061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Batra NN, Li YJ, Yellowley CE, You L, Malone AM, Kim CH, et al. Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells. J Biomech. 2005;38(9):1909–17. https://doi.org/10.1016/j.jbiomech.2004.08.009.

    Article  PubMed  Google Scholar 

  111. Donahue TL, Haut TR, Yellowley CE, Donahue HJ, Jacobs CR. Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulated by chemotransport. J Biomech. 2003;36(9):1363–71. https://doi.org/10.1016/s0021-9290(03)00118-0.

    Article  PubMed  Google Scholar 

  112. Bakker AD, Soejima K, Klein-Nulend J, Burger EH. The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J Biomech. 2001;34(5):671–7. https://doi.org/10.1016/s0021-9290(00)00231-1.

    Article  CAS  PubMed  Google Scholar 

  113. Jee WS, Ma YF. The in vivo anabolic actions of prostaglandins in bone. Bone. 1997;21(4):297–304. https://doi.org/10.1016/s8756-3282(97)00147-6.

    Article  CAS  PubMed  Google Scholar 

  114. Yao W, Jee WS, Zhou H, Lu J, Cui L, Setterberg R, et al. Anabolic effect of prostaglandin E2 on cortical bone of aged male rats comes mainly from modeling-dependent bone gain. Bone. 1999;25(6):697–702. https://doi.org/10.1016/s8756-3282(99)00220-3.

    Article  CAS  PubMed  Google Scholar 

  115. Myers LK, Bhattacharya SD, Herring PA, Xing Z, Goorha S, Smith RA, et al. The isozyme-specific effects of cyclooxygenase-deficiency on bone in mice. Bone. 2006;39(5):1048–52. https://doi.org/10.1016/j.bone.2006.05.015.

    Article  CAS  PubMed  Google Scholar 

  116. Raisz LG. Prostaglandins and bone: physiology and pathophysiology. Osteoarthr Cartil. 1999;7(4):419–21. https://doi.org/10.1053/joca.1998.0230.

    Article  CAS  Google Scholar 

  117. Wadhwa S, Choudhary S, Voznesensky M, Epstein M, Raisz L, Pilbeam C. Fluid flow induces COX-2 expression in MC3T3-E1 osteoblasts via a PKA signaling pathway. Biochem Biophys Res Commun. 2002;297(1):46–51. https://doi.org/10.1016/s0006-291x(02)02124-1.

    Article  CAS  PubMed  Google Scholar 

  118. Raisz LG. Physiologic and pathologic roles of prostaglandins and other eicosanoids in bone metabolism. J Nutr. 1995;125(7 Suppl):2024S–7S. https://doi.org/10.1093/jn/125.suppl_7.2024S.

    Article  CAS  PubMed  Google Scholar 

  119. Markovic T, Jakopin Z, Dolenc MS, Mlinaric-Rascan I. Structural features of subtype-selective EP receptor modulators. Drug Discov Today. 2017;22(1):57–71. https://doi.org/10.1016/j.drudis.2016.08.003.

    Article  CAS  PubMed  Google Scholar 

  120. Minamizaki T, Yoshiko Y, Kozai K, Aubin JE, Maeda N. EP2 and EP4 receptors differentially mediate MAPK pathways underlying anabolic actions of prostaglandin E2 on bone formation in rat calvaria cell cultures. Bone. 2009;44(6):1177–85. https://doi.org/10.1016/j.bone.2009.02.010.

    Article  CAS  PubMed  Google Scholar 

  121. Blackwell KA, Raisz LG, Pilbeam CC. Prostaglandins in bone: bad cop, good cop? Trends Endocrinol Metab. 2010;21(5):294–301. https://doi.org/10.1016/j.tem.2009.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kawaguchi H, Pilbeam CC, Harrison JR, Raisz LG. The role of prostaglandins in the regulation of bone metabolism. Clin Orthop Relat Res. 1995;313:36–46.

    Google Scholar 

  123. Weinreb M, Rutledge SJ, Rodan GA. Systemic administration of an anabolic dose of prostaglandin E2 induces early-response genes in rat bones. Bone. 1997;20(4):347–53. https://doi.org/10.1016/s8756-3282(97)00011-2.

    Article  CAS  PubMed  Google Scholar 

  124. Rawlinson SC, Pitsillides AA, Lanyon LE. Involvement of different ion channels in osteoblasts ‘and osteocytes’ early responses to mechanical strain. Bone. 1996;19(6):609–14.

    Article  CAS  Google Scholar 

  125. Johnson DL, McAllister TN, Frangos JA. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am J Phys. 1996;271(1 Pt 1):E205–8. https://doi.org/10.1152/ajpendo.1996.271.1.E205.

    Article  CAS  Google Scholar 

  126. Turner CH, Takano Y, Owan I, Murrell GAC. Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am J Physiol-Endoc M. 1996;270(4):E634–E9.

    CAS  Google Scholar 

  127. Helfrich MH, Evans DE, Grabowski PS, Pollock JS, Ohshima H, Ralston SH. Expression of nitric oxide synthase isoforms in bone and bone cell cultures. J Bone Miner Res. 1997;12(7):1108–15. https://doi.org/10.1359/jbmr.1997.12.7.1108.

    Article  CAS  PubMed  Google Scholar 

  128. Wimalawansa SJ. Nitric oxide and bone. Ann N Y Acad Sci. 2010;1192:391–403. https://doi.org/10.1111/j.1749-6632.2009.05230.x.

    Article  CAS  PubMed  Google Scholar 

  129. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12. https://doi.org/10.1056/NEJM199312303292706.

    Article  CAS  PubMed  Google Scholar 

  130. Klein-Nulend J, van Oers RF, Bakker AD, Bacabac RG. Nitric oxide signaling in mechanical adaptation of bone. Osteoporos Int. 2014;25(5):1427–37. https://doi.org/10.1007/s00198-013-2590-4.

    Article  CAS  PubMed  Google Scholar 

  131. Kalyanaraman H, Schall N, Pilz RB. Nitric oxide and cyclic GMP functions in bone. Nitric Oxide. 2018;76:62–70. https://doi.org/10.1016/j.niox.2018.03.007.

    Article  CAS  PubMed  Google Scholar 

  132. Fox SW, Chambers TJ, Chow JW. Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am J Phys. 1996;270(6 Pt 1):E955–60. https://doi.org/10.1152/ajpendo.1996.270.6.E955.

    Article  CAS  Google Scholar 

  133. Aguirre J, Buttery L, O'Shaughnessy M, Afzal F, Fernandez de Marticorena I, Hukkanen M et al. Endothelial nitric oxide synthase gene-deficient mice demonstrate marked retardation in postnatal bone formation, reduced bone volume, and defects in osteoblast maturation and activity. Am J Pathol 2001;158(1):247–257. doi:https://doi.org/10.1016/S0002-9440(10)63963-6.

  134. Bergula AP, Haidekker MA, Huang W, Stevens HY, Frangos JA. Venous ligation-mediated bone adaptation is NOS 3 dependent. Bone. 2004;34(3):562–9. https://doi.org/10.1016/j.bone.2003.11.025.

    Article  CAS  PubMed  Google Scholar 

  135. Armour KE, Armour KJ, Gallagher ME, Godecke A, Helfrich MH, Reid DM, et al. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase. Endocrinology. 2001;142(2):760–6. https://doi.org/10.1210/endo.142.2.7977.

    Article  CAS  PubMed  Google Scholar 

  136. Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62(3):525–63. https://doi.org/10.1124/pr.110.002907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rangaswami H, Schwappacher R, Marathe N, Zhuang S, Casteel DE, Haas B et al. Cyclic GMP and protein kinase G control a Src-containing mechanosome in osteoblasts. Sci Signal. 2010;3(153):ra91. doi:https://doi.org/10.1126/scisignal.2001423.

  138. Rangaswami H, Schwappacher R, Tran T, Chan GC, Zhuang S, Boss GR, et al. Protein kinase G and focal adhesion kinase converge on Src/Akt/beta-catenin signaling module in osteoblast mechanotransduction. J Biol Chem. 2012;287(25):21509–19. https://doi.org/10.1074/jbc.M112.347245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Marathe N, Rangaswami H, Zhuang S, Boss GR, Pilz RB. Pro-survival effects of 17beta-estradiol on osteocytes are mediated by nitric oxide/cGMP via differential actions of cGMP-dependent protein kinases I and II. J Biol Chem. 2012;287(2):978–88. https://doi.org/10.1074/jbc.M111.294959.

    Article  CAS  PubMed  Google Scholar 

  140. Lin IC, Smartt JM, Jr., Nah HD, Ischiropoulos H, Kirschner RE. Nitric oxide stimulates proliferation and differentiation of fetal calvarial osteoblasts and dural cells. Plast Reconstr Surg 2008;121(5):1554–1566; discussion 67-9. doi:https://doi.org/10.1097/PRS.0b013e31816c3bd7.

  141. Afzal F, Polak J, Buttery L. Endothelial nitric oxide synthase in the control of osteoblastic mineralizing activity and bone integrity. J Pathol. 2004;202(4):503–10. https://doi.org/10.1002/path.1536.

    Article  CAS  PubMed  Google Scholar 

  142. Butler TW. The chemistry and biology of mineralized tissues. Hormone responsiveness of bone cell populations. Birmingham, Alabama: Ebsco Media, Inc.; 1984.

    Google Scholar 

  143. Shao Y, Alicknavitch M, Farach-Carson MC. Expression of voltage sensitive calcium channel (VSCC) L-type Cav1.2 (alpha1C) and T-type Cav3.2 (alpha1H) subunits during mouse bone development. Dev Dyn. 2005;234(1):54–62. https://doi.org/10.1002/dvdy.20517.

    Article  CAS  PubMed  Google Scholar 

  144. Lu XL, Huo B, Chiang V, Guo XE. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. J Bone Miner Res. 2012;27(3):563–74. https://doi.org/10.1002/jbmr.1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Brown GN, Leong PL, Guo XE. T-Type voltage-sensitive calcium channels mediate mechanically-induced intracellular calcium oscillations in osteocytes by regulating endoplasmic reticulum calcium dynamics. Bone. 2016;88:56–63. https://doi.org/10.1016/j.bone.2016.04.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Verkhratsky A. Calcium and cell death. Subcell Biochem. 2007;45:465–80.

    Article  CAS  Google Scholar 

  147. Liu L, Li H, Cui Y, Li R, Meng F, Ye Z, et al. Calcium channel opening rather than the release of ATP causes the apoptosis of osteoblasts induced by overloaded mechanical stimulation. Cell Physiol Biochem. 2017;42(2):441–54. https://doi.org/10.1159/000477592.

    Article  CAS  PubMed  Google Scholar 

  148. Brewer LD, Thibault V, Chen KC, Langub MC, Landfield PW, Porter NM. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci. 2001;21(1):98–108. doi:21/1/98 [pii].

  149. Tanaka T, Nangaku M, Miyata T, Inagi R, Ohse T, Ingelfinger JR, et al. Blockade of calcium influx through L-type calcium channels attenuates mitochondrial injury and apoptosis in hypoxic renal tubular cells. J Am Soc Nephrol. 2004;15(9):2320–33. https://doi.org/10.1097/01.ASN.0000138287.46849.82.

    Article  CAS  PubMed  Google Scholar 

  150. Lu XL, Huo B, Chiang V, Guo XE. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2012;27(3):563–74. https://doi.org/10.1002/jbmr.1474.

    Article  CAS  Google Scholar 

  151. Lewis KJ, Frikha-Benayed D, Louie J, Stephen S, Spray DC, Thi MM et al. Osteocyte calcium signals encode strain magnitude and loading frequency in vivo. Proc Natl Acad Sci U S A. 2017;114(44):11775–80. doi:https://doi.org/10.1073/pnas.1707863114. Lewis and colleagues used intravital imaging to delineate the responses of Ca2+ influx in osteocytes in response to in vivo mechanical loading. Modulation of the frequency and magnitude of loading in real-time provided critical insight into the function of Ca2+ signaling in bone.

  152. Jing D, Baik AD, Lu XL, Zhou B, Lai X, Wang L, et al. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. FASEB J. 2014;28(4):1582–92. https://doi.org/10.1096/fj.13-237578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ishihara Y, Sugawara Y, Kamioka H, Kawanabe N, Kurosaka H, Naruse K, et al. In situ imaging of the autonomous intracellular Ca(2+) oscillations of osteoblasts and osteocytes in bone. Bone. 2012;50(4):842–52. https://doi.org/10.1016/j.bone.2012.01.021.

    Article  CAS  PubMed  Google Scholar 

  154. Kajiya H, Okamoto F, Fukushima H, Takada K, Okabe K. Mechanism and role of high-potassium-induced reduction of intracellular Ca2+ concentration in rat osteoclasts. Am J Physiol Cell Physiol. 2003;285(2):C457–66.

    Article  CAS  Google Scholar 

  155. Fan P, Hu N, Feng X, Sun Y, Pu D, Lv X et al. Cav1.3 is upregulated in osteoporosis rat model and promotes osteoclast differentiation from preosteoclast cell line RAW264.7. J Cell Physiol. 2019;234(8):12821–7. doi:https://doi.org/10.1002/jcp.27937. This work demonstrated that osteoporosis accompanies increased expression of L-type VSCCs. Knockdown of CaV1.3 inhibits osteoclast differentiation and activity.

  156. Suda T, Tanaka S, Takahashi N. Macrophage colon-stimulating factor (M-CSF) is essential for differentiation rather than proliferation of osteoclast progenitors. Osteoporos Int. 1993;3(Suppl 1):111–3. https://doi.org/10.1007/bf01621881.

    Article  PubMed  Google Scholar 

  157. Takayanagi H, Kim S, Taniguchi T. Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Res. 2002;4(Suppl 3):S227–32. https://doi.org/10.1186/ar581.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3(6):889–901. https://doi.org/10.1016/s1534-5807(02)00369-6.

    Article  CAS  PubMed  Google Scholar 

  159. Mentaverri R, Yano S, Chattopadhyay N, Petit L, Kifor O, Kamel S, et al. The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J. 2006;20(14):2562–4. https://doi.org/10.1096/fj.06-6304fje.

    Article  CAS  PubMed  Google Scholar 

  160. Boudot C, Saidak Z, Boulanouar AK, Petit L, Gouilleux F, Massy Z, et al. Implication of the calcium sensing receptor and the Phosphoinositide 3-kinase/Akt pathway in the extracellular calcium-mediated migration of RAW 264.7 osteoclast precursor cells. Bone. 2010;46(5):1416–23. https://doi.org/10.1016/j.bone.2010.01.383.

    Article  CAS  PubMed  Google Scholar 

  161. Kaji H, Sugimoto T, Kanatani M, Chihara K. High extracellular calcium stimulates osteoclast-like cell formation and bone-resorbing activity in the presence of osteoblastic cells. J Bone Miner Res. 1996;11(7):912–20. https://doi.org/10.1002/jbmr.5650110707.

    Article  CAS  PubMed  Google Scholar 

  162. Ng PY, Brigitte Patricia Ribet A, Pavlos NJ. Membrane trafficking in osteoclasts and implications for osteoporosis. Biochem Soc Trans 2019;47(2):639–650. doi:https://doi.org/10.1042/BST20180445.

  163. Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJ, Klein-Nulend J. Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun. 2004;315(4):823–9. https://doi.org/10.1016/j.bbrc.2004.01.138.

    Article  CAS  PubMed  Google Scholar 

  164. Fan X, Roy E, Zhu L, Murphy TC, Ackert-Bicknell C, Hart CM, et al. Nitric oxide regulates receptor activator of nuclear factor-kappaB ligand and osteoprotegerin expression in bone marrow stromal cells. Endocrinology. 2004;145(2):751–9. https://doi.org/10.1210/en.2003-0726.

    Article  CAS  PubMed  Google Scholar 

  165. Turner CH, Owan I, Jacob DS, McClintock R, Peacock M. Effects of nitric oxide synthase inhibitors on bone formation in rats. Bone. 1997;21(6):487–90. https://doi.org/10.1016/s8756-3282(97)00202-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

1R01AR074473-01 to WRT, MCFC, and AGR; R15AR069943-01 to WRT, and 1F32AR074893-01 to CSW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Thompson.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Skeletal Biology and Regulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, C.S., Robling, A.G., Farach-Carson, M.C. et al. Skeletal Functions of Voltage Sensitive Calcium Channels. Curr Osteoporos Rep 19, 206–221 (2021). https://doi.org/10.1007/s11914-020-00647-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00647-7

Keywords

Navigation