Skip to main content
Log in

Mechanotransduction pathways in bone: calcium fluxes and the role of voltage-operated calcium channels

  • Cellular Engineering-Review
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Changes in strain distribution across the vertebrate skeleton induce modelling and remodelling of bone structure. This relationship, like many in biomedical science, has been recognised since the 1800s, but it is only the recent development of in vivo and in vitro models that is allowing detailed investigation of the cellular mechanisms involved. A number of secondary messenger pathways have been implicated in load transduction by bone cells, and many of these pathways are similar to those proposed for other load-responsive cell types. It appears that load transduction involves interaction between several messenger pathways, rather than one specific switch. Interaction between these pathways may result in a cascade of responses that promote and maintain bone cell activity in remodelling of bone. The paper outlines research on the early rapid signals for load transduction and, in particular, activation of membrane channels in osteoblasts. The involvement of calcium channels in the immediate load response and the modulation of intra-cellular calcium as an early signal are discussed. These membrane channels present a possible target for manipulation in the engineering of bone tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, F. D., Hung, C. T., Pollack, S. R., andBrighton, C. T. (1996): ‘Comparison of [Ca2+]i response to fluid flow of MC3T3-E1, ROS 17/2.8 and cultured primary osteoblast cells’,Cell. Eng.,1, pp. 117–124

    Google Scholar 

  • Amagai, Y., andKasai, S. (1989): ‘A voltage-dependent calcium current in mouse MC3T3-E1 osteogenic cells’,J. Physiol. (London),398, pp. 291–311

    Google Scholar 

  • Bean, B. P. (1989): ‘Classes of calcium channels in vertebrate cells’,Ann. Rev. Physiol.,51, pp. 367–384

    Article  Google Scholar 

  • Binderman, I., Zor, U., Kaye, A., Shimshoni, Z., Harell, A., andSomjen, D. (1988): ‘The transduction of mechanical forces into biochemical events in bone cells may involve activation of Phospholipase A2’,Calcif. Tissue. Int.,42, pp. 261–266.

    Article  Google Scholar 

  • Brighton, C. T., Stafford, B., Gross, S. B., Leatherwood, D. F., Williams, J. L., andPollack, S. R. (1991): ‘The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain’,J. Bone Joint Surg.,73A, (3), pp. 320–331

    Google Scholar 

  • Brighton, C. T., Sennett, B., Farmer, J. C., Iannotti, J. P., Hansen, C. A., Williams, J. L., andWilliamson, J. (1992): ‘The inositol phosphate pathway as a mediator in the proliferative response of rat calvarial bone cells to cyclical biaxial strain’,J. Orthopaed. Res.,10, pp. 385–393

    Article  Google Scholar 

  • Buckley, M. J., Banes, A. J., Levin, L. G., Sumpio, B. E., Sato, M., Jordan, R., Gilbert, J., Link, G. W., andTran Son Tay, R. (1988): ‘Osteoblasts increase their rate of division and align in response to cyclic, mechanical tensionin vitro’,Bone Mineral,4, pp. 225–236

    Google Scholar 

  • Buckley, M. J., Banes, A. J., andJordan, R. D. (1990): ‘The effects of mechanical strain on osteoblastsin vitro’,J. Oral Maxillofac. Surg.,48, pp. 276–282

    Article  Google Scholar 

  • Caffrey, J. M., andCarson, M. C. F. (1989): ‘Vitamin D3 metabolites modulate dihydropyridine-sensitive calcium currents in clonal rat osteosarcoma cells’,J. Biol. Chem.,34, pp. 20265–20274

    Google Scholar 

  • Chesnoy-Marchais, D., andFritsch, J. (1988): ‘Voltage-gated sodium and calcium channels in rat osteoblasts’,J. Physiol. (London),398, pp. 291–311

    Google Scholar 

  • Chow, J. W. M., andChambers, T. J. (1994): ‘Indomethacin has distinct early and late actions on bone formation induced by mechanical stimulation’,Am. J. Physiol.,267, pp. E287-E292.

    Google Scholar 

  • Dallas, S. L., Zaman, G., Pead, M. J., andLanyon, L. E. (1993): ‘Early strain related changes in cultured chick tibiotarsi parallel those associated with adaptive modellingin vivo’,J. Bone Miner. Res.,8, pp. 252–259

    Google Scholar 

  • Davidson, R. M., Tatakis, D. W., andAuerbach, A. L. (1990): ‘Multiple forms of mechanosensitive ion channels in osteoblast-like cells’,Pflugers Arch.,416, pp. 646–651

    Article  Google Scholar 

  • Dodds, R. A., Ali, N., Pead, M. J., andLanyon, L. E. (1993): ‘Early loading-related changes in the activity of glucose 6-phosphate dehydrogenase and alkaline phosphatase in osteocytes and periosteal osteoblasts in rat fibulaein vivo’,J. Bone Miner. Res.,8, pp. 261–267.

    Google Scholar 

  • Dolphin, A. C. (1995): ‘Voltage-dependent calcium channels and their modulation by neurotransmitters and G-proteins’,Exp. Physiol.,80, pp. 1–36

    Google Scholar 

  • Donahue, H. J., Fryer, M. J., Eriksen, E. F., andHeath, H. (1988): ‘Differential effects of parathyroid hormone and its analogues on cytosolic calcium ion and cAMP levels in cultured rat osteoblast like cells’,J. Biol. Chem.,263, pp. 13522–13526

    Google Scholar 

  • Duncan, R. L., andMisler, S. (1989): ‘Voltage-activated and stretch activated Ba2+conducting channels in an osteoblast-like cell line (UMR-106)’,FEBS Lett.,251, pp. 17–21.

    Article  Google Scholar 

  • Duncan, R. L., andHruska, K. A. (1994): ‘Chronic intermittent loading alters mechanosenstive channel characteristics in osteoblast-like cells’,Am. J. Physiol.,267, pp. F909-F916.

    Google Scholar 

  • Duncan, R. L., andTurner, C. H. (1995): ‘Mechanotransduction and the functional response of bone to mechanical strain’,Calcif. Tissue. Int.,57, pp. 344–358

    Article  Google Scholar 

  • Dunlap, K., Luebke, J. I., andTurner, T. J. (1995): ‘Exocytotic Ca2+ channels in mammalian central neurons’,TINS,18, pp. 89–98.

    Google Scholar 

  • El Haj, A. J., Minter, S. L., Rawlinson, S. C. F., Suswillo, R., andLanyon, L. E. (1990): ‘Cellular responses to mechanical loadingin vitro’,J. Bone Miner. Res.,5, pp. 923–932

    Google Scholar 

  • El Haj, A. J., andThomas, G. P. (1994): ‘Cellular modelling of mechanical interactions with the skeleton biomechanics and cells’, Part Two: Hard tissue,Lyall, F., andEl Haj, A. J. (Eds.) pp. 147–163

  • Fox, A. P., Nowycky, M. C., andTsein, R. W. (1987): ‘Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones’,J. Physiol. (London),394, pp. 149–172

    Google Scholar 

  • Grygorczyk, C., Grygorczyk, R., andFerrier, J. (1989): ‘Osteo-blastic cells have L-type calcium channels’,Bone Mineral,7, pp. 137–148.

    Article  Google Scholar 

  • Guggino, S. E., Lajeunesse, D., Wagner, J. A., andSynder, S. H. (1989): ‘Bone remodelling signalled by a dihydropryidine-phenylalkylamine-sensitive calcium channel’,Proc. Nat. Acad. Sci. USA,86, pp. 2957–2960

    Article  Google Scholar 

  • Harter, L. V., Hruska, K. A., andDuncan, R. L. (1995): ‘Human oesteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation’,Endocrinology,136, (2), pp. 528–535

    Article  Google Scholar 

  • Hasegawa, S., Sato, S., Saito, S., Suzuki, Y., andBrunette, D. M. (1985): ‘Mechanical stretching increases the number of cultured bone cells synthesising DNA and alters their pattern of protein synthesis’,Calcif. Tissue Int.,37, pp. 431–436

    Article  Google Scholar 

  • Hung, C. T., Allen, F. D., Pollack, S. R., andBrighton, C. T. (1996): ‘Intracellular Ca2+ stores and extracellular Ca2+ are required in the real time Ca2+ response of bone cells experiencing fluid flow’,J. Biomech.,29, pp. 1411–1417

    Article  Google Scholar 

  • Jones, D. B., Nolte, H., Scholubbers, J.-G., Turner, E., andVeltel, D. (1991): ‘Biochemical signal transduction of mechanical strain in osteoblast-like cells’,Biomaterials,12, pp. 101–109

    Article  Google Scholar 

  • Jones, D. B., andBingmann, D. (1991): ‘How do osteoblasts respond to mechanical stimulation?’,Cells Meterials,1, pp. 329–340

    Google Scholar 

  • Karpinski, E., Wu, L., Civitelli, R., Avioli, L. V., Hruska, K. A., andPang, P. K. T. (1989): ‘A dihydropyridine-sensitive channel in rodent osteoblastic cells’,Calcif. Tissue Int.,45, pp. 54–57

    Article  Google Scholar 

  • Klein-Nulend, J., Van Der Plas, A., Semeins, C. M., Ajubi, N. E., Frangos, J. A., Nijweide, P. J., andBurger, E. H. (1995): ‘Sensitivity of osteocytes to biochemical stressin vitro’,FASEB,9, pp. 441–445

    Google Scholar 

  • Klein-Nulend, J., Burger, E. H., Semeins, C. M., Raizz, L. G., andPilbeam, C. C. (1997): ‘Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells’,J. Bone Miner. Res.,1, pp. 45–51

    Article  Google Scholar 

  • Kodama, H. A., Amagi, Y., Sudo, H., Kasai, S., andYamamoto, S. (1981): ‘Establishment of a clonal osteogenic cell line from newborn mouse calvaria’,Jpn. J. Oral Biol.,23, pp. 899–901

    Google Scholar 

  • Lean, J. M., Jagger, C. J., Chambers, T. J., andChow, J. W. M. (1995): ‘Increased insulin-like growth factor I mRNA expression in rat osteocytes in response to mechanical stimulation’,Am. J. Physiol.,268, pp. E318-E327

    Google Scholar 

  • Leblanc, A. D., Schneider, V. S., Evans, H. J., Englebertson, D. A., andKrebs, J. M. (1990): ‘Bone mineral loss and recovery after 17 weeks of bed rest’,J. Bone Miner Res.,5 pp. 843–850

    Google Scholar 

  • Lee, H. M., andWong, B. S. (1994): ‘Stretch-activated increases in intracellular calcium in osteoblast-like cells’,J. Dent. Res.,73, pp. 419–423

    Google Scholar 

  • Loza, J., Stephan, J., Dolce, E., Dziak, C., andSimasko, R. (1994): ‘Calcium currents in osteoblastic cells-dependence on cellular growth stage’,Calcif. Tissue Int.,55, pp. 128–133

    Article  Google Scholar 

  • McClesky, E. W. (1994): ‘Calcium channels: cellular roles and molecular mechanisms’,Curr. Opinion Neurobiol.,4, pp. 304–312

    Article  Google Scholar 

  • McDonald, F., Somasundaram, B., McCann, T. J., Mason, W. T., andMeikle, M. C. (1996): ‘Calcium waves in fluid-flow stimulated osteoblasts are G-protein mediated’,Arch. Biochem. Biophys.,326, pp. 31–38

    Article  Google Scholar 

  • Morain, P., Peglion, J. L., andGiesen-Crouse, E. (1992): ‘Ca2+ channel inhibition in a rat osteoblast-like cell line, UMR 106, by a new dihydropyridine derivative, S11568’,Eur. J. Pharmacol.,220, pp. 1–17

    Article  Google Scholar 

  • Murray, D. W., andRushton, N. (1990): ‘The effect of strain on bone cell prostaglandin E2 release: a new experimental method’,Calcif. Tissue. Int.,47, pp. 35–39

    Article  Google Scholar 

  • Neidlinger-Wilke, C., Stalla, I., Claes, L., Brand, R., Hoellen, I., Rubenacher, S., Arand, M., andKinzi, L. (1995): ‘Human osteoblasts from younger normal and osteoporotic donors show differences in proliferation and TGF-b release in response to cyclic strain’,J. Biomech.,28, (12), pp. 1411–1418

    Article  Google Scholar 

  • Nishioka, S., Fukuda, K., andPanaka, S. (1993): ‘Cyclic stretch increases alkaline phosphatase activity of osteoblast-like cells: a role for prostaglandin E2’,Bone Mineral,21, pp. 141–150

    Article  Google Scholar 

  • Nowycky, M., Fox, A. P., andTsein, R. Y. (1985): ‘Three types of neuronal calcium channels with different calcium agonist snesitivity’,Nature,316, pp. 440–443

    Article  Google Scholar 

  • Pead, M. J., andLanyon, L. E. (1989) ‘Indomethacin modulation of load-related stimulation of new bone formationin-vivo’,Calcif. Tissue Int.,45, pp. 34–40

    Article  Google Scholar 

  • Pitsillides, A. A., Rawlinson, S. C. F., Suswillo, R. F. L., Bourrin, S., Zaman, G., andLanyon, L. E. (1995): ‘Mechanical strain-induced NO production by bone cells: A possible role in adaptive bone (re)modelling?’,FASEB,9, pp. 1614–1622

    Google Scholar 

  • Preston, M. R., El Haj, A. J., andPublicover, S. J. (1996): ‘Expression of voltage-operated Ca2+ channels in rat bone marrow stromal cellsin vitro’,Bone,19, pp. 101–106

    Article  Google Scholar 

  • Publicover, S. J., Thomas, G. P., andEl Haj, A. J. (1994): ‘Induction of a low voltage-activated, fast-inactivating Ca2+ channel in cultured bone marrow stromal cells by dexamethasone’,Calcif. Tissue Int.,54, pp. 125–132

    Article  Google Scholar 

  • Publicover, S. J., Preston, M. R., andEl Haj, A. J. (1995): ‘Voltage-dependent potentiation of low-voltage activated Ca2+ channel currents in cultured rat bone marrow cells’,J. Physiol.,489, pp. 649–661

    Google Scholar 

  • Raab-Cullen, D. M., Thiede, M. A., Peterson, D. N., Kimmel, D. B., andRecker, R. R. (1994): ‘Mechanical loading stimulates rapid changes in periosteal gene expression’,Calcif. Tissue Int.,55, pp. 473–478

    Article  Google Scholar 

  • Rawlinson, S., El Haj, A., Minter, S., Tavares, I., Bennett, A., andLanyon, L. (1991). ‘Load-related increases of prostaglandin production in cores of adult canine cancellous bonein-vitro-a role for prostacyclin in adaptive bone remodelling’,J. Bone Miner. Res.,6, pp. 1345–1351

    Google Scholar 

  • Rawlinson, S. C. F., Mosley, J. R. B., Suswillo, R. F. L., Pitsillides, A. A., andLanyon, L. E. (1995): ‘Calvarial and limb bone cells in organ and monolayer culture do not show the same early responses to dynamic mechanical strain’,J. Bone Miner. Res.,10, pp. 1225–1232

    Google Scholar 

  • Rawlinson, S. C. F., Pitsillides, A. A., andLanyon, L. E. (1996): ‘Involvement of different ion channels in osteoblasts and osteocytes early response to mechanical strain’,Bone,19, pp. 609–614

    Article  Google Scholar 

  • Rodan, G., Bourret, L., Harvey, A., andMensi, T. (1975): ‘Cyclic AMP and cyclic GMP mediators of the mechanical effects on bone remodelling’,Science189, pp. 467–499

    Article  Google Scholar 

  • Roelofsen, J., Klein-Nulend, J., andBurger, E. H. (1995): ‘Mechanical stimulation by intermittent hydrostatic compression promotes bone specific gene expressionin vitro’,J. Biomech.,28, (12), pp. 1493–1503

    Article  Google Scholar 

  • Rubin, C. T., andLanyon, L. E. (1984): ‘Regulation of bone formation by applied dynamic loads’,J. Bone Joint Surg.,66A, pp. 397–402

    Google Scholar 

  • Sammons, R. L., El Haj, A. J., andMarquis, P. M. (1994): ‘A novel culture which permits the synthesis of proteins by rat calvarial cells cultured on hydroxyapatite particles to be quantified’,Biomaterials,15 (7), pp. 536–542

    Article  Google Scholar 

  • Schofield, J., Tangtrongskadi, N., Hughes-Fulford, M., andSnowdowne, K. (1994): ‘Increased [Ca2+]i through stretch-acti-vated channels in MC3T3-E1 osteoblast-like cells’,J. Dent. Res.,73, p. 419

    Google Scholar 

  • Shelton, R., andEl Haj, A. J. (1992): ‘A novel carrier bead model to investigate bone cell responses to mechanical compressionin vitro’,J. Bone Miner. Res.,7, (supp. 2), pp. S403-S405

    Google Scholar 

  • Simkin, A., Ayalon, J., andLeichter, I. (1987): ‘Increased trabecular bone density due to bone-loading exercises in postmenopausal osteoporotic women’,Calcif. Tissue Int.,40, pp. 50–63

    Article  Google Scholar 

  • Skerry, T. M., Bitensky, L., Chayen, J., andLanyon, L. E. (1989): ‘Early strain related changes in enzyme activity in osteocytes following bone loadingin-vivo’,J. Bone Min. Res.,4, pp. 783–788

    Google Scholar 

  • Snutch, T. P., andReiner, P. B. (1992): ‘Ca2+ channels: diversity of form and function’,Curr. Opinion Neurobiol.,2, pp. 247–253

    Article  Google Scholar 

  • Somjen, D., Binderman, I., Berger, E., andHarell, A. (1980): ‘Bone remodelling induced by physical stress in prostaglandin E2 mediated’,Biochem. Biophys. Acta,627, pp. 91–100

    Google Scholar 

  • Stanford, C., Stevens, J., andBrand, R. (1995): ‘Cellular deformation reversibly depresses RT-PCR detectable levels of bone related mRNA’,J. Biomech.,28, (12), pp. 1419–1427

    Article  Google Scholar 

  • Sudo, H., Kodama, H. A., Amagi, Y., Yamamoto, S., andKasai, S. (1983): ‘In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria’,J. Cell Biol.,96, pp. 191–198

    Article  Google Scholar 

  • Sun, Y. Q., McLeod, K. J., andRubin, C. T. (1995): ‘Mechanically induced periosteal bone formation is paralleled by the upregulation of collagen type one mRNA in osteocytes as measured byin situ reverse transcript-polymerase chain reaction’,Calcif. Tissue Int.,57, pp. 456–462

    Article  Google Scholar 

  • Thomas, G. P., andEl Haj, A. J. (1996): ‘Bone marrow stromal cells are load responsivein-vitro’,Calcif. Tissue Int.,58, pp. 101–108

    Article  Google Scholar 

  • Triggle, D. J. (1990): ‘Calcium, calcium channels and calcium channel antagonists’,Can. J. Physiol. Pharmacol.,68, pp. 1474–1481

    Google Scholar 

  • Turner, C. H., Forwood, M. R., Rho, J., andYoskikawa, T. (1994): ‘Mechanical loading thresholds for lamellar and woven bone formation’,J. Bone Miner.9, pp. 87–97

    Google Scholar 

  • Turner, C. H., andForwood, M. R. (1995): ‘What role does the osteocyte network play in bone adaptation?’,Bione,16, pp. 283–285

    Article  Google Scholar 

  • Vadiakias, G. P., andBanes, A. J. (1992). ‘Verapamil decreases cyclic load-induced calcium incorporation in ROS 17/2.8 Osteosarcoma cell cultures’,Matrix,12, pp. 439–447

    Google Scholar 

  • Walker, L. M., Said Ahmed, M. A. A., Publicover, S. J., andEl Haj, A. J. (1997): ‘Mechanical load transduction pathways: intra-cellular calcium fluxes and calcium channels’,J. Bone Miner. Res.,17, p. 19

    Google Scholar 

  • Xia, S. L., andFerrier, J. (1995): ‘Calcium signal induced by mechanical perturbation of osteoclasts’,J. Cell Physiol.,163, pp. 493–501

    Article  Google Scholar 

  • Xia, S. L., andFerrier, J. (1996): ‘Localised calcium signalling in multinucleated osteoclasts’,J. Cell Physiol.,163, pp. 148–155

    Article  Google Scholar 

  • Yamaguchi, D. T., Green, J., Merritt, B. S., Kleeman, C. R., andMuallem, S. (1989): ‘Properties of the depolarization activated calcium and barium entry in osteoblast-like cells’,J. Biol. Chem.,264, pp. 197–204

    Google Scholar 

  • Yeh, C. K., andRodan, G. A. (1984): ‘Tensile forces enhance prostaglandin E synthesis in osteoblastic cells grown on collagen ribbons’,Calcif. Tissue Int.,36, pp. 567–571

    Article  Google Scholar 

  • Ypey, D. L., Weidema, A. F., Hold, K. M., Van Der Laarse, A., Ravesloot, J. H., Van Der Plas, A., andNijweide, P. J., (1992): ‘Voltage, calcium, and stretch activated ionic channels and intra-cellular calcium in bone cells’,J. Bone Miner. Res.,7, (Suppl. 2), pp. S377-S387

    Article  Google Scholar 

  • Zaman, G., Dallas, S. L., andLanyon, L. E. (1992): ‘Cultured embryonic bone shafts show osteogenic responses to mechanical loading’,Calcif. Tissue Int.,51, pp. 132–136

    Article  Google Scholar 

  • Zaman, G., Suswillo, R. F. L., Cheng, M. Z., Tavares, I. A., andLanyon, L. E. (1997): ‘Early responses to dynamic strain changes and prostaglandins in bone-derived cells in culture’,J. Bone Miner. Res.,12, (5), pp. 769–777

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. El Haj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Haj, A.J., Walker, L.M., Preston, M.R. et al. Mechanotransduction pathways in bone: calcium fluxes and the role of voltage-operated calcium channels. Med. Biol. Eng. Comput. 37, 403–409 (1999). https://doi.org/10.1007/BF02513320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02513320

Keywords

Navigation