Skip to main content

Advertisement

Log in

Human Genetics of Sclerosing Bone Disorders

  • Genetics (M Johnson and S Ralston, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The group of sclerosing bone disorders encompasses a variety of disorders all marked by increased bone mass. In this review, we give an overview of the genetic causes of this heterogeneous group of disorders and briefly touch upon the value of these findings for the development of novel therapeutic agents.

Recent Findings

Advances in the next-generation sequencing technologies are accelerating the molecular dissection of the pathogenic mechanisms underlying skeletal dysplasias.

Summary

Throughout the years, the genetic cause of these disorders has been extensively studied which resulted in the identification of a variety of disease-causing genes and pathways that are involved in bone formation by osteoblasts, bone resorption by osteoclasts, or both processes. Due to this rapidly increasing knowledge, the insights into the regulatory mechanisms of bone metabolism are continuously improving resulting in the identification of novel therapeutic targets for disorders with reduced bone mass and increased bone fragility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Roodman GD. Cell biology of the osteoclast. Exp Hematol. 1999;27(8):1229–41.

    Article  CAS  PubMed  Google Scholar 

  2. Bruzzaniti A, Baron R. Molecular regulation of osteoclast activity. Rev Endocr Metab Disord. 2006;7(1–2):123–39. https://doi.org/10.1007/s11154-006-9009-x.

    Article  CAS  PubMed  Google Scholar 

  3. Balemans W, Van Wesenbeeck L, Van Hul W. A clinical and molecular overview of the human osteopetroses. Calcif Tissue Int. 2005;77(5):263–74. https://doi.org/10.1007/s00223-005-0027-6.

    Article  CAS  PubMed  Google Scholar 

  4. de Vernejoul MC. Sclerosing bone disorders. Best Pract Res Clin Rheumatol. 2008;22(1):71–83. https://doi.org/10.1016/j.berh.2007.12.011.

    Article  PubMed  CAS  Google Scholar 

  5. Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone. 2008;42(1):19–29. https://doi.org/10.1016/j.bone.2007.08.029.

    Article  PubMed  CAS  Google Scholar 

  6. Aker M, Rouvinski A, Hashavia S, Ta-Shma A, Shaag A, Zenvirt S, et al. An SNX10 mutation causes malignant osteopetrosis of infancy. J Med Genet. 2012;49(4):221–6. https://doi.org/10.1136/jmedgenet-2011-100520.

    Article  CAS  PubMed  Google Scholar 

  7. Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A, et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med. 2003;9(4):399–406. https://doi.org/10.1038/nm842.

    Article  CAS  PubMed  Google Scholar 

  8. Cleiren E, Benichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet. 2001;10(25):2861–7.

    Article  CAS  PubMed  Google Scholar 

  9. Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008;83(1):64–76. https://doi.org/10.1016/j.ajhg.2008.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001;104(2):205–15.

    Article  CAS  PubMed  Google Scholar 

  11. Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, et al. Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet. 2000;9(13):2059–63.

    Article  CAS  PubMed  Google Scholar 

  12. Pangrazio A, Fasth A, Sbardellati A, Orchard PJ, Kasow KA, Raza J, et al. SNX10 mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity. J Bone Miner Res. 2013;28(5):1041–9. https://doi.org/10.1002/jbmr.1849.

    Article  CAS  PubMed  Google Scholar 

  13. Pangrazio A, Poliani PL, Megarbane A, Lefranc G, Lanino E, Di Rocco M, et al. Mutations in OSTM1 (grey lethal) define a particularly severe form of autosomal recessive osteopetrosis with neural involvement. J Bone Miner Res. 2006;21(7):1098–105. https://doi.org/10.1359/jbmr.060403.

    Article  CAS  PubMed  Google Scholar 

  14. Sly WS, Whyte MP, Sundaram V, Tashian RE, Hewett-Emmett D, Guibaud P, et al. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med. 1985;313(3):139–45. https://doi.org/10.1056/NEJM198507183130302.

    Article  CAS  PubMed  Google Scholar 

  15. Smahi A, Courtois G, Rabia SH, Doffinger R, Bodemer C, Munnich A, et al. The NF-kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet. 2002;11(20):2371–5.

    Article  CAS  PubMed  Google Scholar 

  16. Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, et al. Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res. 2003;18(10):1740–7. https://doi.org/10.1359/jbmr.2003.18.10.1740.

    Article  CAS  PubMed  Google Scholar 

  17. Van Hul E, Gram J, Bollerslev J, Van Wesenbeeck L, Mathysen D, Andersen PE, et al. Localization of the gene causing autosomal dominant osteopetrosis type I to chromosome 11q12-13. J Bone Miner Res. 2002;17(6):1111–7. https://doi.org/10.1359/jbmr.2002.17.6.1111.

    Article  PubMed  Google Scholar 

  18. Waguespack SG, Koller DL, White KE, Fishburn T, Carn G, Buckwalter KA, et al. Chloride channel 7 (ClCN7) gene mutations and autosomal dominant osteopetrosis, type II. J Bone Miner Res. 2003;18(8):1513–8. https://doi.org/10.1359/jbmr.2003.18.8.1513.

    Article  CAS  PubMed  Google Scholar 

  19. Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007;117(4):919–30. https://doi.org/10.1172/JCI30328.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Palagano E, Menale C, Sobacchi C, Villa A. Genetics of osteopetrosis. Curr Osteoporos Rep. 2018;16(1):13–25. https://doi.org/10.1007/s11914-018-0415-2.

    Article  PubMed  Google Scholar 

  21. Marks SC Jr. Osteopetrosis—multiple pathways for the interception of osteoclast function. Appl Pathol. 1987;5(3):172–83.

    PubMed  Google Scholar 

  22. Teti A, Econs MJ. Osteopetroses, emphasizing potential approaches to treatment. Bone. 2017;102:50–9. https://doi.org/10.1016/j.bone.2017.02.002.

    Article  CAS  PubMed  Google Scholar 

  23. Sugiura Y, Yamada Y, Ko J. Pycnodysostosis in Japan: report of six cases and a review of Japaneses literature. Birth Defects Orig Artic Ser. 1974;10(12):78–98.

    CAS  PubMed  Google Scholar 

  24. Maroteaux P, Lamy M. Pyknodysostosis. Presse Med. 1962;70:999–1002.

    CAS  PubMed  Google Scholar 

  25. Donnarumma M, Regis S, Tappino B, Rosano C, Assereto S, Corsolini F, et al. Molecular analysis and characterization of nine novel CTSK mutations in twelve patients affected by pycnodysostosis. Mutation in brief #961. Online. Hum Mutat. 2007;28(5):524. https://doi.org/10.1002/humu.9490.

    Article  PubMed  Google Scholar 

  26. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.

    Article  CAS  PubMed  Google Scholar 

  27. Bromme D, Okamoto K, Wang BB, Biroc S. Human cathepsin O2, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme. J Biol Chem. 1996;271(4):2126–32.

    Article  CAS  PubMed  Google Scholar 

  28. Inaoka T, Bilbe G, Ishibashi O, Tezuka K, Kumegawa M, Kokubo T. Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem Biophys Res Commun. 1995;206(1):89–96. https://doi.org/10.1006/bbrc.1995.1013.

    Article  CAS  PubMed  Google Scholar 

  29. Li YP, Alexander M, Wucherpfennig AL, Yelick P, Chen W, Stashenko P. Cloning and complete coding sequence of a novel human cathepsin expressed in giant cells of osteoclastomas. J Bone Miner Res. 1995;10(8):1197–202. https://doi.org/10.1002/jbmr.5650100809.

    Article  CAS  PubMed  Google Scholar 

  30. Shi GP, Chapman HA, Bhairi SM, DeLeeuw C, Reddy VY, Weiss SJ. Molecular cloning of human cathepsin O, a novel endoproteinase and homologue of rabbit OC2. FEBS Lett. 1995;357(2):129–34.

    Article  CAS  PubMed  Google Scholar 

  31. Everts V, Aronson DC, Beertsen W. Phagocytosis of bone collagen by osteoclasts in two cases of pycnodysostosis. Calcif Tissue Int. 1985;37(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  32. Nishimura G, Kozlowski K. Osteosclerotic metaphyseal dysplasia. Pediatr Radiol. 1993;23(6):450–2.

    Article  CAS  PubMed  Google Scholar 

  33. • Iida A, Xing W, Docx MK, Nakashima T, Wang Z, Kimizuka M, et al. Identification of biallelic LRRK1 mutations in osteosclerotic metaphyseal dysplasia and evidence for locus heterogeneity. J Med Genet. 2016;53:568–74. https://doi.org/10.1136/jmedgenet-2016-103756. Using WES, the authors identified the disease-causing gene for OSMD and deliver functional evidence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Lierop AH, Appelman-Dijkstra NM, Papapoulos SE. Sclerostin deficiency in humans. Bone. 2017;96:51–62. https://doi.org/10.1016/j.bone.2016.10.010.

    Article  PubMed  CAS  Google Scholar 

  35. Balemans W, Van Hul W. Human genetics of SOST. J Musculoskelet Neuronal Interact. 2006;6(4):355–6.

    CAS  PubMed  Google Scholar 

  36. Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39(2):91–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Collette NM, Genetos DC, Economides AN, Xie L, Shahnazari M, Yao W, et al. Targeted deletion of Sost distal enhancer increases bone formation and bone mass. Proc Natl Acad Sci U S A. 2012;109(35):14092–7. https://doi.org/10.1073/pnas.1207188109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Lierop AH, Hamdy NA, van Egmond ME, Bakker E, Dikkers FG, Papapoulos SE. Van Buchem disease: clinical, biochemical, and densitometric features of patients and disease carriers. J Bone Miner Res. 2013;28(4):848–54. https://doi.org/10.1002/jbmr.1794.

    Article  PubMed  CAS  Google Scholar 

  39. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10(5):537–43.

    Article  CAS  PubMed  Google Scholar 

  40. Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68(3):577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Lierop AH, Hamdy NA, Hamersma H, van Bezooijen RL, Power J, Loveridge N, et al. Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J Bone Miner Res. 2011;26(12):2804–11. https://doi.org/10.1002/jbmr.474.

    Article  PubMed  CAS  Google Scholar 

  42. • Fijalkowski I, Geets E, Steenackers E, Van Hoof V, Ramos FJ, Mortier G, et al. A novel domain-specific mutation in a sclerosteosis patient suggests a role of LRP4 as an anchor for sclerostin in human bone. J Bone Miner Res. 2016;31(4):874–81. https://doi.org/10.1002/jbmr.2782. In this study, the authors delivered evidence for the functional implications of mutations in the cavity of the third b-propeller domain in the pathogenesis of sclerosteosis.

    Article  CAS  PubMed  Google Scholar 

  43. Leupin O, Piters E, Halleux C, Hu S, Kramer I, Morvan F, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286(22):19489–500. https://doi.org/10.1074/jbc.M110.190330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280(20):19883–7. https://doi.org/10.1074/jbc.M413274200.

    Article  CAS  PubMed  Google Scholar 

  45. Boudin E, Yorgan TA, Fijalkowski I, Sonntag S, Steenackers E, Hendrickx G, et al. The Lrp4 R1170Q homozygous knock-in mouse recapitulates the bone phenotype of sclerosteosis in humans. J Bone Miner Res. 2017;32(8):1739–49. https://doi.org/10.1002/jbmr.3160.

    Article  CAS  PubMed  Google Scholar 

  46. Balemans W, Van Hul W. The genetics of low-density lipoprotein receptor-related protein 5 in bone: a story of extremes. Endocrinology. 2007;148(6):2622–9. https://doi.org/10.1210/en.2006-1352.

    Article  CAS  PubMed  Google Scholar 

  47. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513–21. https://doi.org/10.1056/NEJMoa013444.

    Article  CAS  PubMed  Google Scholar 

  48. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11–9. https://doi.org/10.1086/338450.

    Article  CAS  PubMed  Google Scholar 

  49. Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Benichou O, Scopelliti D, et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet. 2003;72(3):763–71. https://doi.org/10.1086/368277.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Boudin E, Fijalkowski I, Piters E, Van Hul W. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum. 2013;43(2):220–40. https://doi.org/10.1016/j.semarthrit.2013.01.004.

    Article  CAS  PubMed  Google Scholar 

  51. Balemans W, Devogelaer JP, Cleiren E, Piters E, Caussin E, Van Hul W. Novel LRP5 missense mutation in a patient with a high bone mass phenotype results in decreased DKK1-mediated inhibition of Wnt signaling. J Bone Miner Res. 2007;22(5):708–16. https://doi.org/10.1359/jbmr.070211.

    Article  CAS  PubMed  Google Scholar 

  52. Balemans W, Piters E, Cleiren E, Ai M, Van Wesenbeeck L, Warman ML, et al. The binding between sclerostin and LRP5 is altered by DKK1 and by high-bone mass LRP5 mutations. Calcif Tissue Int. 2008;82(6):445–53. https://doi.org/10.1007/s00223-008-9130-9.

    Article  CAS  PubMed  Google Scholar 

  53. Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, et al. Bone density ligand, sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res. 2006;21(11):1738–49. https://doi.org/10.1359/jbmr.060810.

    Article  CAS  PubMed  Google Scholar 

  54. Glass DA 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8(5):751–64. https://doi.org/10.1016/j.devcel.2005.02.017.

    Article  CAS  PubMed  Google Scholar 

  55. Kim SJ, Bieganski T, Sohn YB, Kozlowski K, Semenov M, Okamoto N, et al. Identification of signal peptide domain SOST mutations in autosomal dominant craniodiaphyseal dysplasia. Hum Genet. 2011;129(5):497–502. https://doi.org/10.1007/s00439-011-0947-3.

    Article  CAS  PubMed  Google Scholar 

  56. Bieganski T, Baranska D, Miastkowska I, Kobielski A, Gorska-Chrzastek M, Kozlowski K. A boy with severe craniodiaphyseal dysplasia and apparently normal mother. Am J Med Genet A. 2007;143A(20):2435–43. https://doi.org/10.1002/ajmg.a.31938.

    Article  PubMed  Google Scholar 

  57. Hurt RL. Osteopathia striata-Voorhoeve’s disease: report of a case presenting the features of osteopathia striata and osteopetrosis. J Bone Joint Surg Br. 1953;35-B(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  58. Ward LM, Rauch F, Travers R, Roy M, Montes J, Chabot G, et al. Osteopathia striata with cranial sclerosis: clinical, radiological, and bone histological findings in an adolescent girl. Am J Med Genet A. 2004;129A(1):8–12. https://doi.org/10.1002/ajmg.a.30107.

    Article  CAS  PubMed  Google Scholar 

  59. Jenkins ZA, van Kogelenberg M, Morgan T, Jeffs A, Fukuzawa R, Pearl E, et al. Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat Genet. 2009;41(1):95–100. https://doi.org/10.1038/ng.270.

    Article  CAS  PubMed  Google Scholar 

  60. Perdu B, de Freitas F, Frints SG, Schouten M, Schrander-Stumpel C, Barbosa M, et al. Osteopathia striata with cranial sclerosis owing to WTX gene defect. J Bone Miner Res. 2010;25(1):82–90. https://doi.org/10.1359/jbmr.090707.

    Article  CAS  PubMed  Google Scholar 

  61. Perdu B, Lakeman P, Mortier G, Koenig R, Lachmeijer AM, Van Hul W. Two novel WTX mutations underscore the unpredictability of male survival in osteopathia striata with cranial sclerosis. Clin Genet. 2011;80(4):383–8. https://doi.org/10.1111/j.1399-0004.2010.01553.x.

    Article  CAS  PubMed  Google Scholar 

  62. Tanneberger K, Pfister AS, Kriz V, Bryja V, Schambony A, Behrens J. Structural and functional characterization of the Wnt inhibitor APC membrane recruitment 1 (Amer1). J Biol Chem. 2011;286(22):19204–14. https://doi.org/10.1074/jbc.M111.224881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C, et al. Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science. 2007;316(5827):1043–6. https://doi.org/10.1126/science/1141515.

    Article  CAS  PubMed  Google Scholar 

  64. Martin K, Nathwani S, Bunyan R. Craniometaphyseal dysplasia: a review and novel oral manifestation. J Oral Biol Craniofac Res. 2017;7(2):134–6. https://doi.org/10.1016/j.jobcr.2017.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mughal MZ, Padidela R. Miscellaneous bone disorders. Endocr Dev. 2015;28:226–46. https://doi.org/10.1159/000381048.

    Article  PubMed  Google Scholar 

  66. Reichenberger E, Tiziani V, Watanabe S, Park L, Ueki Y, Santanna C, et al. Autosomal dominant craniometaphyseal dysplasia is caused by mutations in the transmembrane protein ANK. Am J Hum Genet. 2001;68(6):1321–6. https://doi.org/10.1086/320612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hu Y, Chen IP, de Almeida S, Tiziani V, Do Amaral CM, Gowrishankar K, et al. A novel autosomal recessive GJA1 missense mutation linked to craniometaphyseal dysplasia. PLoS One. 2013;8(8):e73576. https://doi.org/10.1371/journal.pone.0073576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gurley KA, Reimer RJ, Kingsley DM. Biochemical and genetic analysis of ANK in arthritis and bone disease. Am J Hum Genet. 2006;79(6):1017–29. https://doi.org/10.1086/509881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. • Chen IP, Luxmi R, Kanaujiya J, Hao Z, Reichenberger EJ. Craniometaphyseal dysplasia mutations in ANKH negatively affect human induced pluripotent stem cell differentiation into osteoclasts. Stem Cell Rep. 2017;9(5):1369–76. https://doi.org/10.1016/j.stemcr.2017.09.016. This study explores the use of hiPSCs in in vitro functional analyses of osteoclast biology and offers a new tool for investigating molecular mechanisms in diseases as demonstrated by the results on ANKH mutations to study craniometaphyseal dysplasia.

    Article  CAS  Google Scholar 

  70. Chen IP, Wang L, Jiang X, Aguila HL, Reichenberger EJ. A Phe377del mutation in ANK leads to impaired osteoblastogenesis and osteoclastogenesis in a mouse model for craniometaphyseal dysplasia (CMD). Hum Mol Genet. 2011;20(5):948–61. https://doi.org/10.1093/hmg/ddq541.

    Article  CAS  PubMed  Google Scholar 

  71. Stains JP, Civitelli R. Connexins in the skeleton. Semin Cell Dev Biol. 2016;50:31–9. https://doi.org/10.1016/j.semcdb.2015.12.017.

    Article  CAS  PubMed  Google Scholar 

  72. Ya J, Erdtsieck-Ernste EB, de Boer PA, van Kempen MJ, Jongsma H, Gros D, et al. Heart defects in connexin43-deficient mice. Circ Res. 1998;82(3):360–6.

    Article  CAS  PubMed  Google Scholar 

  73. Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, et al. Cardiac malformation in neonatal mice lacking connexin43. Science. 1995;267(5205):1831–4.

    Article  CAS  PubMed  Google Scholar 

  74. Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol. 2000;151(4):931–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chung DJ, Castro CH, Watkins M, Stains JP, Chung MY, Szejnfeld VL, et al. Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin43. J Cell Sci. 2006;119(Pt 20):4187–98. https://doi.org/10.1242/jcs.03162.

    Article  CAS  PubMed  Google Scholar 

  76. Watkins M, Grimston SK, Norris JY, Guillotin B, Shaw A, Beniash E, et al. Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling. Mol Biol Cell. 2011;22(8):1240–51. https://doi.org/10.1091/mbc.E10-07-0571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. • Moorer MC, Hebert C, Tomlinson RE, Iyer SR, Chason M, Stains JP. Defective signaling, osteoblastogenesis and bone remodeling in a mouse model of connexin 43 C-terminal truncation. J Cell Sci. 2017;130(3):531–40. https://doi.org/10.1242/jcs.197285. The results reported in this work expand on the knowledge on connexin 43 in the regulation of cell function and bone acquisition using a truncated connexin 43 mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Moorer MC, Stains JP. Connexin43 and the intercellular signaling network regulating skeletal remodeling. Curr Osteoporos Rep. 2017;15(1):24–31. https://doi.org/10.1007/s11914-017-0345-4.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Janssens K, Vanhoenacker F, Bonduelle M, Verbruggen L, Van Maldergem L, Ralston S, et al. Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment. J Med Genet. 2006;43(1):1–11. https://doi.org/10.1136/jmg.2005.033522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Di Carlo M, Silveri F, Tardella M, Carotti M, Salaffi F. Multiple diaphyseal sclerosis (Ribbing disease): what about neridronate? Osteoporos Int. 2016;27(10):3127–31. https://doi.org/10.1007/s00198-016-3604-9.

    Article  PubMed  CAS  Google Scholar 

  81. Janssens K, Gershoni-Baruch R, Guanabens N, Migone N, Ralston S, Bonduelle M, et al. Mutations in the gene encoding the latency-associated peptide of TGF-beta 1 cause Camurati-Engelmann disease. Nat Genet. 2000;26(3):273–5. https://doi.org/10.1038/81563.

    Article  CAS  PubMed  Google Scholar 

  82. Kinoshita A, Saito T, Tomita H, Makita Y, Yoshida K, Ghadami M, et al. Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat Genet. 2000;26(1):19–20. https://doi.org/10.1038/79128.

    Article  CAS  PubMed  Google Scholar 

  83. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15(7):757–65. https://doi.org/10.1038/nm.1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Whyte MP, Totty WG, Novack DV, Zhang X, Wenkert D, Mumm S. Camurati-Engelmann disease: unique variant featuring a novel mutation in TGFbeta1 encoding transforming growth factor beta 1 and a missense change in TNFSF11 encoding RANK ligand. J Bone Miner Res. 2011;26(5):920–33. https://doi.org/10.1002/jbmr.283.

    Article  CAS  PubMed  Google Scholar 

  85. Nishimura G, Nishimura H, Tanaka Y, Makita Y, Ikegawa S, Ghadami M, et al. Camurati-Engelmann disease type II: progressive diaphyseal dysplasia with striations of the bones. Am J Med Genet. 2002;107(1):5–11.

    Article  PubMed  Google Scholar 

  86. Seeger LL, Hewel KC, Yao L, Gold RH, Mirra JM, Chandnani VP, et al. Ribbing disease (multiple diaphyseal sclerosis): imaging and differential diagnosis. AJR Am J Roentgenol. 1996;167(3):689–94. https://doi.org/10.2214/ajr.167.3.8751682.

    Article  CAS  PubMed  Google Scholar 

  87. Nieminen P, Lukinmaa PL, Alapulli H, Methuen M, Suojarvi T, Kivirikko S, et al. DLX3 homeodomain mutations cause tricho-dento-osseous syndrome with novel phenotypes. Cells Tissues Organs. 2011;194(1):49–59. https://doi.org/10.1159/000322561.

    Article  PubMed  Google Scholar 

  88. Li Y, Han D, Zhang H, Liu H, Wong S, Zhao N, et al. Morphological analyses and a novel de novo DLX3 mutation associated with tricho-dento-osseous syndrome in a Chinese family. Eur J Oral Sci. 2015;123(4):228–34. https://doi.org/10.1111/eos.12197.

    Article  CAS  PubMed  Google Scholar 

  89. Price JA, Wright JT, Kula K, Bowden DW, Hart TC. A common DLX3 gene mutation is responsible for tricho-dento-osseous syndrome in Virginia and North Carolina families. J Med Genet. 1998;35(10):825–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Price JA, Bowden DW, Wright JT, Pettenati MJ, Hart TC. Identification of a mutation in DLX3 associated with tricho-dento-osseous (TDO) syndrome. Hum Mol Genet. 1998;7(3):563–9.

    Article  CAS  PubMed  Google Scholar 

  91. Zhao N, Han D, Liu H, Li Y, Wong SW, Cao Z, et al. Senescence: novel insight into DLX3 mutations leading to enhanced bone formation in tricho-dento-osseous syndrome. Sci Rep. 2016;6:38680. https://doi.org/10.1038/srep38680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lenz WD, Majewski F. A generalized disorders of the connective tissues with progeria, choanal atresia, symphalangism, hypoplasia of dentine and craniodiaphyseal hypostosis. Birth Defects Orig Artic Ser. 1974;10(12):133–6.

    CAS  PubMed  Google Scholar 

  93. Majewski F. Lenz-Majewski hyperostotic dwarfism: reexamination of the original patient. Am J Med Genet. 2000;93(4):335–8.

    Article  CAS  PubMed  Google Scholar 

  94. Sousa SB, Jenkins D, Chanudet E, Tasseva G, Ishida M, Anderson G, et al. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome. Nat Genet. 2014;46(1):70–6. https://doi.org/10.1038/ng.2829.

    Article  CAS  PubMed  Google Scholar 

  95. Wattanasirichaigoon D, Visudtibhan A, Jaovisidha S, Laothamatas J, Chunharas A. Expanding the phenotypic spectrum of Lenz-Majewski syndrome: facial palsy, cleft palate and hydrocephalus. Clin Dysmorphol. 2004;13(3):137–42.

    Article  PubMed  Google Scholar 

  96. Whyte MP, Blythe A, McAlister WH, Nenninger AR, Bijanki VN, Mumm S. Lenz-Majewski hyperostotic dwarfism with hyperphosphoserinuria from a novel mutation in PTDSS1 encoding phosphatidylserine synthase 1. J Bone Miner Res. 2015;30(4):606–14. https://doi.org/10.1002/jbmr.2398.

    Article  CAS  PubMed  Google Scholar 

  97. Xu C, Zheng Z, Fang L, Zhao N, Lin Z, Liang T, et al. Phosphatidylserine enhances osteogenic differentiation in human mesenchymal stem cells via ERK signal pathways. Mater Sci Eng C Mater Biol Appl. 2013;33(3):1783–8. https://doi.org/10.1016/j.msec.2013.01.005.

    Article  CAS  PubMed  Google Scholar 

  98. Ozdemirel AE, Cakit BD, Erdem HR, Koc B. A rare benign disorder mimicking metastasis on radiographic examination: a case report of osteopoikilosis. Rheumatol Int. 2011;31(8):1113–6. https://doi.org/10.1007/s00296-010-1664-2.

    Article  PubMed  Google Scholar 

  99. Mahbouba J, Mondher G, Amira M, Walid M, Naceur B. Osteopoikilosi: a rare cause of bone pain. Caspian J Intern Med. 2015;6(3):177–9.

    PubMed  PubMed Central  Google Scholar 

  100. Hellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk PC, Costa T, et al. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet. 2004;36(11):1213–8. https://doi.org/10.1038/ng1453.

    Article  CAS  PubMed  Google Scholar 

  101. Ehrig T, Cockerell CJ. Buschke-Ollendorff syndrome: report of a case and interpretation of the clinical phenotype as a type 2 segmental manifestation of an autosomal dominant skin disease. J Am Acad Dermatol. 2003;49(6):1163–6. https://doi.org/10.1016/S0190.

    Article  PubMed  Google Scholar 

  102. Mumm S, Wenkert D, Zhang X, McAlister WH, Mier RJ, Whyte MP. Deactivating germline mutations in LEMD3 cause osteopoikilosis and Buschke-Ollendorff syndrome, but not sporadic melorheostosis. J Bone Miner Res. 2007;22(2):243–50. https://doi.org/10.1359/jbmr.061102.

    Article  CAS  PubMed  Google Scholar 

  103. Kotwal A, Clarke BL. Melorheostosis: a rare sclerosing bone dysplasia. Curr Osteoporos Rep. 2017;15(4):335–42. https://doi.org/10.1007/s11914-017-0375-y.

    Article  PubMed  Google Scholar 

  104. Hellemans J, Debeer P, Wright M, Janecke A, Kjaer KW, Verdonk PC, et al. Germline LEMD3 mutations are rare in sporadic patients with isolated melorheostosis. Hum Mutat. 2006;27(3):290. https://doi.org/10.1002/humu.9403.

    Article  PubMed  Google Scholar 

  105. Whyte MP, Griffith M, Trani L, Mumm S, Gottesman GS, McAlister WH, et al. Melorheostosis: exome sequencing of an associated dermatosis implicates postzygotic mosaicism of mutated KRAS. Bone. 2017;101:145–55. https://doi.org/10.1016/j.bone.2017.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alonso N, Calero-Paniagua I, Del Pino-Montes J. Clinical and genetic advances in Paget’s disease of bone: a review. Clin Rev Bone Miner Metab. 2017;15(1):37–48. https://doi.org/10.1007/s12018-016-9226-0.

    Article  CAS  PubMed  Google Scholar 

  107. Hocking LJ, Lucas GJ, Daroszewska A, Mangion J, Olavesen M, Cundy T, et al. Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget’s disease. Hum Mol Genet. 2002;11(22):2735–9.

    Article  CAS  PubMed  Google Scholar 

  108. Laurin N, Brown JP, Morissette J, Raymond V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet. 2002;70(6):1582–8. https://doi.org/10.1086/340731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Albagha OM, Visconti MR, Alonso N, Langston AL, Cundy T, Dargie R, et al. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone. Nat Genet. 2010;42(6):520–4. https://doi.org/10.1038/ng.562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Albagha OM, Wani SE, Visconti MR, Alonso N, Goodman K, Brandi ML, et al. Genome-wide association identifies three new susceptibility loci for Paget’s disease of bone. Nat Genet. 2011;43(7):685–9. https://doi.org/10.1038/ng.845.

    Article  CAS  PubMed  Google Scholar 

  111. Gianfrancesco F, Rendina D, Di Stefano M, Mingione A, Esposito T, Merlotti D, et al. A nonsynonymous TNFRSF11A variation increases NFkappaB activity and the severity of Paget’s disease. J Bone Miner Res. 2012;27(2):443–52. https://doi.org/10.1002/jbmr.542.

    Article  CAS  PubMed  Google Scholar 

  112. • Vallet M, Soares DC, Wani S, Sophocleous A, Warner J, Salter DM, et al. Targeted sequencing of the Paget’s disease associated 14q32 locus identifies several missense coding variants in RIN3 that predispose to Paget’s disease of bone. Hum Mol Genet. 2015;24(11):3286–95. https://doi.org/10.1093/hmg/ddv068. The sequencing effort reported in this study was the first to look into the genetic variation in the RIN3 gene in the context of human disease. This gene has been implicated in bone research following GWAS on Paget’s disease and bone and BMD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Obaid R, Wani SE, Azfer A, Hurd T, Jones R, Cohen P, et al. Optineurin negatively regulates osteoclast differentiation by modulating NF-kappaB and interferon signaling: implications for Paget’s disease. Cell Rep. 2015;13(6):1096–102. https://doi.org/10.1016/j.celrep.2015.09.071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Laurier E, Amiable N, Gagnon E, Brown JP, Michou L. Effect of a rare genetic variant of TM7SF4 gene on osteoclasts of patients with Paget’s disease of bone. BMC Med Genet. 2017;18(1):133. https://doi.org/10.1186/s12881-017-0495-3.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Watts GDJ, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36:377–81. https://doi.org/10.1038/ng1332 https://www.nature.com/articles/ng1332#supplementary-information.

  116. Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 2013;495(7442):467–73. https://doi.org/10.1038/nature11922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Qi X, Pang Q, Wang J, Zhao Z, Wang O, Xu L, et al. Familial early-onset Paget’s disease of bone associated with a novel hnRNPA2B1 mutation. Calcif Tissue Int. 2017;101(2):159–69. https://doi.org/10.1007/s00223-017-0269-0.

    Article  CAS  PubMed  Google Scholar 

  118. Chung PY, Beyens G, de Freitas F, Boonen S, Geusens P, Vanhoenacker F, et al. Indications for a genetic association of a VCP polymorphism with the pathogenesis of sporadic Paget’s disease of bone, but not for TNFSF11 (RANKL) and IL-6 polymorphisms. Mol Genet Metab. 2011;103(3):287–92. https://doi.org/10.1016/j.ymgme.2011.03.021.

    Article  CAS  PubMed  Google Scholar 

  119. Usategui-Martin R, Calero-Paniagua I, Garcia-Aparicio J, Corral-Gudino L, Del Pino Montes J, Gonzalez Sarmiento R. VAV3 gene polymorphism is associated with Paget’s disease of bone. Genet Test Mol Biomarkers. 2016;20(6):335–7. https://doi.org/10.1089/gtmb.2015.0292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Faccio R, Teitelbaum SL, Fujikawa K, Chappel J, Zallone A, Tybulewicz VL, et al. Vav3 regulates osteoclast function and bone mass. Nat Med. 2005;11(3):284–90. https://doi.org/10.1038/nm1194.

    Article  CAS  PubMed  Google Scholar 

  121. Usategui-Martin R, Garcia-Aparicio J, Corral-Gudino L, Calero-Paniagua I, Del Pino-Montes J, Gonzalez Sarmiento R. Polymorphisms in autophagy genes are associated with Paget disease of bone. PLoS One. 2015;10(6):e0128984. https://doi.org/10.1371/journal.pone.0128984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456(7219):264–8. https://doi.org/10.1038/nature07383.

    Article  CAS  PubMed  Google Scholar 

  123. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032–6. https://doi.org/10.1038/nature03029.

    Article  CAS  PubMed  Google Scholar 

  124. • Lu B, Jiao Y, Wang Y, Dong J, Wei M, Cui B, et al. A FKBP5 mutation is associated with Paget’s disease of bone and enhances osteoclastogenesis. Exp Mol Med. 2017;49(5):e336. https://doi.org/10.1038/emm.2017.64. Using WES, the authors identified mutations in a previously unreported gene for Paget’s disease of bone and deliver functional evidence for its potential involvement.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Divisato G, Formicola D, Esposito T, Merlotti D, Pazzaglia L, Del Fattore A, et al. ZNF687 mutations in severe Paget disease of bone associated with giant cell tumor. Am J Hum Genet. 2016;98(2):275–86. https://doi.org/10.1016/j.ajhg.2015.12.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Divisato G, di Carlo FS, Petrillo N, Esposito T, Gianfrancesco F. ZNF687 mutations are frequently found in pagetic patients from South Italy: implication in the pathogenesis of Paget’s disease of bone. Clin Genet. 2018; https://doi.org/10.1111/cge.13247.

  127. Divisato G, Scotto di Carlo F, Pazzaglia L, Rizzo R, Coviello DA, Benassi MS, et al. The distinct clinical features of giant cell tumor of bone in pagetic and non-pagetic patients are associated with genetic, biochemical and histological differences. Oncotarget. 2017;8(38):63121–31. https://doi.org/10.18632/oncotarget.18670.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Greenblatt MB, Park KH, Oh H, Kim JM, Shin DY, Lee JM, et al. CHMP5 controls bone turnover rates by dampening NF-kappaB activity in osteoclasts. J Exp Med. 2015;212(8):1283–301. https://doi.org/10.1084/jem.20150407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Michou L, Conceicao N, Morissette J, Gagnon E, Miltenberger-Miltenyi G, Siris ES, et al. Genetic association study of UCMA/GRP and OPTN genes (PDB6 locus) with Paget’s disease of bone. Bone. 2012;51(4):720–8. https://doi.org/10.1016/j.bone.2012.06.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Beyens G, Daroszewska A, de Freitas F, Fransen E, Vanhoenacker F, Verbruggen L, et al. Identification of sex-specific associations between polymorphisms of the osteoprotegerin gene, TNFRSF11B, and Paget’s disease of bone. J Bone Miner Res. 2007;22(7):1062–71. https://doi.org/10.1359/jbmr.070333.

    Article  CAS  PubMed  Google Scholar 

  131. Cundy T, Hegde M, Naot D, Chong B, King A, Wallace R, et al. A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum Mol Genet. 2002;11(18):2119–27.

    Article  CAS  PubMed  Google Scholar 

  132. Nakatsuka K, Nishizawa Y, Ralston SH. Phenotypic characterization of early onset Paget’s disease of bone caused by a 27-bp duplication in the TNFRSF11A gene. J Bone Miner Res. 2003;18(8):1381–5. https://doi.org/10.1359/jbmr.2003.18.8.1381.

    Article  CAS  PubMed  Google Scholar 

  133. Whyte MP, Hughes AE. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res. 2002;17(1):26–9. https://doi.org/10.1359/jbmr.2002.17.1.26.

    Article  CAS  PubMed  Google Scholar 

  134. Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet. 2000;24(1):45–8. https://doi.org/10.1038/71667.

    Article  CAS  PubMed  Google Scholar 

  135. Whyte MP, Tau C, McAlister WH, Zhang X, Novack DV, Preliasco V, et al. Juvenile Paget’s disease with heterozygous duplication within TNFRSF11A encoding RANK. Bone. 2014;68:153–61. https://doi.org/10.1016/j.bone.2014.07.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Donath J, Speer G, Kosa JP, Arvai K, Balla B, Juhasz P, et al. Polymorphisms of CSF1 and TM7SF4 genes in a case of mild juvenile Paget’s disease found using next-generation sequencing. Croat Med J. 2015;56(2):145–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Troen BR. The role of cathepsin K in normal bone resorption. Drug News Perspect. 2004;17(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  138. Bromme D, Lecaille F. Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin Investig Drugs. 2009;18(5):585–600. https://doi.org/10.1517/13543780902832661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. • Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med. 2017;377(15):1417–27. https://doi.org/10.1056/NEJMoa1708322. The authors demonstrate that preceeding alendronate treatment with romosozumab administration decreases the risk of fracture more significantly than that of alendronate treatment alone in postmenopausal patients with high risk of fracture.

    Article  CAS  PubMed  Google Scholar 

  140. McClung MR. Sclerostin antibodies in osteoporosis: latest evidence and therapeutic potential. Ther Adv Musculoskelet Dis. 2017;9(10):263–70. https://doi.org/10.1177/1759720X17726744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was supported by grants of the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO grant G019712N and G031915N) and the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 602300 (SYBIL). EB holds a postdoctoral grant (12A3814N) with the Fonds voor Wetenschappelijk Onderzoek Vlaanderen. RDR holds a doctoral grant with the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (1S07717N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Van Hul.

Ethics declarations

Conflict of Interest

Raphaël De Ridder, Eveline Boudin, Geert Mortier, and Wim Van Hul declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Ridder, R., Boudin, E., Mortier, G. et al. Human Genetics of Sclerosing Bone Disorders. Curr Osteoporos Rep 16, 256–268 (2018). https://doi.org/10.1007/s11914-018-0439-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0439-7

Keywords

Navigation