Skip to main content

Advertisement

Log in

Molecular regulation of osteoclast activity

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Osteoclasts are multinucleated cells derived from hematopoietic precursors that are primarily responsible for the degradation of mineralized bone during bone development, homeostasis and repair. In various skeletal disorders such as osteoporosis, hypercalcemia of malignancy, tumor metastases and Paget’s disease, bone resorption by osteoclasts exceeds bone formation by osteoblasts leading to decreased bone mass, skeletal fragility and bone fracture. The overall rate of osteoclastic bone resorption is regulated either at the level of differentiation of osteoclasts from their monocytic/macrophage precursor pool or through the regulation of key functional proteins whose specific activities in the mature osteoclast control its attachment, migration and resorption. Thus, reducing osteoclast numbers and/or decreasing the bone resorbing activity of osteoclasts are two common therapeutic approaches for the treatment of hyper-resorptive skeletal diseases. In this review, several of the key functional players involved in the regulation of osteoclast activity will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baron R, Neff L, Louvard D, Courtoy PJ. Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 1985;101:2210–22.

    PubMed  CAS  Google Scholar 

  2. Baron R, Neff L, Brown W, Courtoy PJ, Louvard D, Farquhar MG. Polarized secretion of lysosomal enzymes: co-distribution of cation-independent mannose-6-phosphate receptors and lysosomal enzymes along the osteoclast exocytic pathway. J Cell Biol 1988;106:1863–72.

    PubMed  CAS  Google Scholar 

  3. Vaananen HK, Zhao H, Mulari M, Halleen JM. The cell biology of osteoclast function. J Cell Sci 2000;113(Pt 3):377–81.

    PubMed  CAS  Google Scholar 

  4. Blair HC, Teitelbaum SL, Ghiselli R, Gluck S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 1989;245:855–57.

    PubMed  CAS  Google Scholar 

  5. Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, et al. Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 2000;9:2059–63.

    PubMed  CAS  Google Scholar 

  6. Hall TJ, Chambers TJ. Optimal bone resorption by isolated rat osteoclasts requires chloride/bicarbonate exchange. Calcif Tissue Int 1989;45:378–80.

    PubMed  CAS  Google Scholar 

  7. Weinreb M, Halperin D. Rat osteoclast precursors in vivo express a vitronectin receptor and a chloride-bicarbonate exchanger. Connect Tissue Res 1998;37:177–82.

    PubMed  CAS  Google Scholar 

  8. Li YP, Chen W, Liang Y, Li E, Stashenko P. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 1999;23:447–51.

    PubMed  CAS  Google Scholar 

  9. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 2000;25:343–6.

    PubMed  CAS  Google Scholar 

  10. Scimeca JC, Franchi A, Trojani C, Parrinello H, Grosgeorge J, Robert C, et al. The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone 2000;26:207–13.

    PubMed  CAS  Google Scholar 

  11. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 2001;104:205–15.

    PubMed  CAS  Google Scholar 

  12. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 1983;80:2752–6.

    PubMed  CAS  Google Scholar 

  13. Nesbitt SA, Horton MA. Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 1997;276:266–9.

    PubMed  CAS  Google Scholar 

  14. Salo J, Lehenkari P, Mulari M, Metsikko K, Vaananen HK. Removal of osteoclast bone resorption products by transcytosis. Science 1997;276:270–3.

    PubMed  CAS  Google Scholar 

  15. Marchisio PC, Cirillo D, Teti A, Zambonin-Zallone A, Tarone G. Rous sarcoma virus-transformed fibroblasts and cells of monocytic origin display a peculiar dot-like organization of cytoskeletal proteins involved in microfilament–membrane interactions. Exp Cell Res 1987;169:202–14.

    PubMed  CAS  Google Scholar 

  16. Ochoa GC, Slepnev VI, Neff L, Ringstad N, Takei K, Daniell L, et al. A functional link between dynamin and the actin cytoskeleton at podosomes. J Cell Biol 2000;150:377–89.

    PubMed  CAS  Google Scholar 

  17. Pfaff M, Jurdic P. Podosomes in osteoclast-like cells: structural analysis and cooperative roles of paxillin, proline-rich tyrosine kinase 2 (Pyk2) and integrin alphaVbeta3. J Cell Sci 2001;114: 2775–86.

    PubMed  CAS  Google Scholar 

  18. Destaing O, Saltel F, Geminard JC, Jurdic P, Bard F. Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 2003;14:407–16.

    PubMed  CAS  Google Scholar 

  19. Burridge K, Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 1996;12:463–518.

    PubMed  CAS  Google Scholar 

  20. Linder S, Aepfelbacher M. Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 2003;13:376–85.

    PubMed  CAS  Google Scholar 

  21. Hiura K, Lim SS, Little SP, Lin S, Sato M. Differentiation dependent expression of tensin and cortactin in chicken osteoclasts. Cell Motil Cytoskeleton 1995;30:272–84.

    PubMed  CAS  Google Scholar 

  22. Chellaiah M, Kizer N, Silva M, Alvarez U, Kwiatkowski D, Hruska KA. Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J Cell Biol 2000;148:665–78.

    PubMed  CAS  Google Scholar 

  23. Calle Y, Jones GE, Jagger C, Fuller K, Blundell MP, Chow J, et al. WASp deficiency in mice results in failure to form osteoclast sealing zones and defects in bone resorption. Blood 2004;103:3552–61.

    PubMed  CAS  Google Scholar 

  24. Hurst IR, Zuo J, Jiang J, Holliday LS. Actin-related protein 2/3 complex is required for actin ring formation. J Bone Miner Res 2004;19:499–506.

    PubMed  CAS  Google Scholar 

  25. Bruzzaniti A, Neff L, Sanjay A, Horne WC, De Camilli P, Baron R. Dynamin forms a Src kinase-sensitive complex with Cbl and regulates podosomes and osteoclast activity. Mol Biol Cell 2005;16:3301–13.

    PubMed  CAS  Google Scholar 

  26. Sato T, del Carmen OM, Hou P, Heegaard AM, Kumegawa M. Foged NT, Delaisse JM. Identification of the membrane-type matrix metalloproteinase MT1-MMP in osteoclasts. J Cell Sci 1997;110(Pt 5):589–96.

    PubMed  CAS  Google Scholar 

  27. Duong LT, Rodan GA. Integrin-mediated signaling in the regulation of osteoclast adhesion and activation. Front Biosci 1998;3:d757–68.

    PubMed  CAS  Google Scholar 

  28. Horton MA, Taylor ML, Arnett TR, Helfrich MH. Arg–Gly–Asp (RGD) peptides and the anti-vitronectin receptor antibody 23C6 inhibit dentine resorption and cell spreading by osteoclasts. Exp Cell Res 1991;195:368–75.

    PubMed  CAS  Google Scholar 

  29. Horton MA, Dorey EL, Nesbitt SA, Samanen J, Ali FE, Stadel JM, et al. Modulation of vitronectin receptor-mediated osteoclast adhesion by Arg–Gly–Asp peptide analogs: a structure–function analysis. J Bone Miner Res 1993;8:239–47.

    PubMed  CAS  Google Scholar 

  30. Zambonin ZA, Teti A, Gaboli M, Marchisio PC. Beta 3 subunit of vitronectin receptor is present in osteoclast adhesion structures and not in other monocyte-macrophage derived cells. Connect Tissue Res 1989;20:143–9.

    Google Scholar 

  31. Reinholt FP, Hultenby K, Oldberg A, Heinegard D. Osteopontin—a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA 1990;87:4473–5.

    PubMed  CAS  Google Scholar 

  32. Hultenby K, Reinholt FP, Heinegard D. Distribution of integrin subunits on rat metaphyseal osteoclasts and osteoblasts. Eur J Cell Biol 1993;62:86–93.

    PubMed  CAS  Google Scholar 

  33. Nakamura I, Gailit J, Sasaki T. Osteoclast integrin alphaVbeta3 is present in the clear zone and contributes to cellular polarization. Cell Tissue Res 1996;286:507–15.

    PubMed  CAS  Google Scholar 

  34. Masarachia P, Weinreb M, Balena R, Rodan GA. Comparison of the distribution of 3H-alendronate and 3H-etidronate in rat and mouse bones. Bone 1996;19:281–90.

    PubMed  CAS  Google Scholar 

  35. Lakkakorpi PT, Horton MA, Helfrich MH, Karhukorpi EK, Vaananen HK. Vitronectin receptor has a role in bone resorption but does not mediate tight sealing zone attachment of osteoclasts to the bone surface. J Cell Biol 1991;115:1179–86.

    PubMed  CAS  Google Scholar 

  36. Lakkakorpi PT, Helfrich MH, Horton MA, Vaananen HK. Spatial organization of microfilaments and vitronectin receptor, alpha v beta 3, in osteoclasts. A study using confocal laser scanning microscopy. J Cell Sci 1993;104(Pt 3):663–70.

    PubMed  CAS  Google Scholar 

  37. Pelletier AJ, Kunicki T, Quaranta V. Activation of the integrin alpha v beta 3 involves a discrete cation-binding site that regulates conformation. J Biol Chem 1996;271:1364–70.

    PubMed  CAS  Google Scholar 

  38. Faccio R, Grano M, Colucci S, Villa A, Giannelli G, Quaranta V, et al. Localization and possible role of two different alpha v beta 3 integrin conformations in resting and resorbing osteoclasts. J Cell Sci 2002;115:2919–29.

    PubMed  CAS  Google Scholar 

  39. Fabbri M, Fumagalli L, Bossi G, Bianchi E, Bender JR, Pardi R. A tyrosine-based sorting signal in the beta2 integrin cytoplasmic domain mediates its recycling to the plasma membrane and is required for ligand-supported migration. EMBO J 1999;18: 4915–25.

    PubMed  CAS  Google Scholar 

  40. Faccio R, Novack DV, Zallone A, Ross FP, Teitelbaum SL. Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by beta3 integrin. J Cell Biol 2003;162:499–509.

    PubMed  CAS  Google Scholar 

  41. Nakamura I, Pilkington MF, Lakkakorpi PT, Lipfert L, Sims SM, Dixon SJ, et al. Role of alpha(v)beta(3) integrin in osteoclast migration and formation of the sealing zone. J Cell Sci 1999;112(Pt 22):3985–93.

    PubMed  CAS  Google Scholar 

  42. Boissy P, Machuca I, Pfaff M, Ficheux D, Jurdic P. Aggregation of mononucleated precursors triggers cell surface expression of alphavbeta3 integrin, essential to formation of osteoclast-like multinucleated cells. J Cell Sci 1998;111(Pt 17):2563–74.

    PubMed  CAS  Google Scholar 

  43. McHugh KP, Hodivala-Dilke K, Zheng MH, Namba N, Lam J, Novack D, et al. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 2000;105:433–40.

    PubMed  CAS  Google Scholar 

  44. Feng X, Novack DV, Faccio R, Ory DS, Aya K, Boyer MI, et al. A Glanzmann’s mutation in beta 3 integrin specifically impairs osteoclast function. J Clin Invest 2001;107:1137–44.

    PubMed  CAS  Google Scholar 

  45. Sato M, Sardana MK, Grasser WA, Garsky VM, Murray JM, Gould RJ. Echistatin is a potent inhibitor of bone resorption in culture. J Cell Biol 1990;111:1713–23.

    PubMed  CAS  Google Scholar 

  46. King KL, D’Anza JJ, Bodary S, Pitti R, Siegel M, Lazarus RA, et al. Effects of kistrin on bone resorption in vitro and serum calcium in vivo. J Bone Miner Res 1994;9:381–7.

    Article  PubMed  CAS  Google Scholar 

  47. Fisher JE, Caulfield MP, Sato M, Quartuccio HA, Gould RJ, Garsky VM, et al. Inhibition of osteoclastic bone resorption in vivo by echistatin, an “arginyl–glycyl–aspartyl” (RGD)-containing protein. Endocrinology 1993;132:1411–3.

    PubMed  CAS  Google Scholar 

  48. Masarachia P, Yamamoto M, Leu CT, Rodan G, Duong L. Histomorphometric evidence for echistatin inhibition of bone resorption in mice with secondary hyperparathyroidism. Endocrinology 1998;139:1401–10.

    PubMed  CAS  Google Scholar 

  49. Engleman VW, Nickols GA, Ross FP, Horton MA, Griggs DW, Settle SL, et al. A peptidomimetic antagonist of the alpha(v)beta3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J Clin Invest 1997;99:2284–92.

    PubMed  CAS  Google Scholar 

  50. Yamamoto M, Fisher JE, Gentile M, Seedor JG, Leu CT, Rodan SB, et al. The integrin ligand echistatin prevents bone loss in ovariectomized mice and rats. Endocrinology 1998;139:1411–9.

    PubMed  CAS  Google Scholar 

  51. Crippes BA, Engleman VW, Settle SL, Delarco J, Ornberg RL, Helfrich MH, et al. Antibody to beta3 integrin inhibits osteoclast-mediated bone resorption in the thyroparathyroidectomized rat. Endocrinology 1996;137:918–24.

    PubMed  CAS  Google Scholar 

  52. Zimolo Z, Wesolowski G, Tanaka H, Hyman JL, Hoyer JR, Rodan GA. Soluble alpha v beta 3-integrin ligands raise [Ca2+]i in rat osteoclasts and mouse-derived osteoclast-like cells. Am J Physiol 1994;266:C376–81.

    PubMed  CAS  Google Scholar 

  53. Paniccia R, Riccioni T, Zani BM, Zigrino P, Scotlandi K, Teti A. Calcitonin down-regulates immediate cell signals induced in human osteoclast-like cells by the bone sialoprotein-IIA fragment through a postintegrin receptor mechanism. Endocrinology 1995;136:1177–86.

    PubMed  CAS  Google Scholar 

  54. Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999; 285:1028–32.

    PubMed  CAS  Google Scholar 

  55. Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. Prog Biophys Mol Biol 1999;71:435–78.

    PubMed  CAS  Google Scholar 

  56. Sanjay A, Houghton A, Neff L, DiDomenico E, Bardelay C, Antoine E, et al. Cbl associates with Pyk2 and Src to regulate Src kinase activity, alpha(v)beta(3) integrin-mediated signaling, cell adhesion, and osteoclast motility. J Cell Biol 2001;152:181–95.

    PubMed  CAS  Google Scholar 

  57. Tanaka S, Amling M, Neff L, Peyman A, Uhlmann E, Levy JB, et al. c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorption. Nature 1996;383:528–31.

    PubMed  CAS  Google Scholar 

  58. Armstrong AP, Tometsko ME, Glaccum M, Sutherland CL, Cosman D, Dougall WC. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J Biol Chem 2002;277: 44347–56.

    PubMed  CAS  Google Scholar 

  59. Horne WC, Neff L, Chatterjee D, Lomri A, Levy JB, Baron R. Osteoclasts express high levels of pp60c-src in association with intracellular membranes. J Cell Biol 1992;119:1003–13.

    PubMed  CAS  Google Scholar 

  60. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet 2003;4:638–49.

    PubMed  CAS  Google Scholar 

  61. Nakamura I, Jimi E, Duong LT, Sasaki T, Takahashi N, Rodan GA, et al. Tyrosine phosphorylation of p130Cas is involved in actin organization in osteoclasts. J Biol Chem 1998;273:11144–9.

    PubMed  CAS  Google Scholar 

  62. Duong LT, Lakkakorpi PT, Nakamura I, Machwate M, Nagy RM, Rodan GA. PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of alpha(v)beta3 integrin, and phosphorylated by src kinase. J Clin Invest 1998;102:881–92.

    PubMed  CAS  Google Scholar 

  63. Miyazaki T, Sanjay A, Neff L, Tanaka S, Horne WC, Baron R. Src kinase activity is essential for osteoclast function. J Biol Chem 2004;279:17660–6.

    PubMed  CAS  Google Scholar 

  64. Lakkakorpi PT, Wesolowski G, Zimolo Z, Rodan GA, Rodan SB. Phosphatidylinositol 3-kinase association with the osteoclast cytoskeleton, and its involvement in osteoclast attachment and spreading. Exp Cell Res 1997;237:296–306.

    PubMed  CAS  Google Scholar 

  65. Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 1997;13:513–609.

    PubMed  CAS  Google Scholar 

  66. Parsons SJ, Parsons JT. Src family kinases, key regulators of signal transduction. Oncogene 2004;23:7906–9.

    PubMed  CAS  Google Scholar 

  67. Boggon TJ, Eck MJ. Structure and regulation of Src family kinases. Oncogene 2004;23:7918–27.

    PubMed  CAS  Google Scholar 

  68. Horne WC, Sanjay A, Bruzzaniti A, Baron R. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 2005;208:106–25.

    PubMed  CAS  Google Scholar 

  69. Schlessinger J. New roles for Src kinases in control of cell survival and angiogenesis. Cell 2000;100:293–6.

    PubMed  CAS  Google Scholar 

  70. Lakkakorpi PT, Nakamura I, Young M, Lipfert L, Rodan GA, Duong LT. Abnormal localisation and hyperclustering of (alpha)(V)(beta)(3) integrins and associated proteins in Src-deficient or tyrphostin A9-treated osteoclasts. J Cell Sci 2001;114:149–60.

    PubMed  CAS  Google Scholar 

  71. Sanjay A, Horne WC, Baron R. The Cbl family: ubiquitin ligases regulating signaling by tyrosine kinases. Sci STKE 2001;2001:E40.

    Google Scholar 

  72. Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR. Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 1992;90:1622–7.

    PubMed  CAS  Google Scholar 

  73. Lowell CA, Niwa M, Soriano P, Varmus HE. Deficiency of the Hck and Src tyrosine kinases results in extreme levels of extramedullary hematopoiesis. Blood 1996;87:1780–92.

    PubMed  CAS  Google Scholar 

  74. Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991;64:693–702.

    PubMed  CAS  Google Scholar 

  75. Stein PL, Vogel H, Soriano P. Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice. Genes Dev 1994;8:1999–2007.

    PubMed  CAS  Google Scholar 

  76. Schwartzberg PL, Xing L, Hoffmann O, Lowell CA, Garrett L, Boyce BF, et al. Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src −/− mutant mice. Genes Dev 1997;11:2835–44.

    PubMed  CAS  Google Scholar 

  77. Felsenfeld DP, Schwartzberg PL, Venegas A, Tse R, Sheetz MP. Selective regulation of integrin–cytoskeleton interactions by the tyrosine kinase Src. Nat Cell Biol 1999;1:200–6.

    PubMed  CAS  Google Scholar 

  78. Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ. Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Proc Natl Acad Sci USA 2003;100:13298–302.

    PubMed  CAS  Google Scholar 

  79. Sims N, Bogdanovic Z, Maragh M, Okigaki M, Logan SK, Neff L, et al. Impaired osteoclast function in Pyk2 knockout mice and cumulative effects in Pyk2/Src doubleknockout. J Bone Miner Res 1999;14:S183.

    Google Scholar 

  80. Duong LT, Nakamura I, Lakkakorpi PT, Lipfert L, Bett AJ, Rodan GA. Inhibition of osteoclast function by adenovirus expressing antisense protein-tyrosine kinase 2. J Biol Chem 2001;276:7484–92.

    PubMed  CAS  Google Scholar 

  81. Okigaki M, Avis C, Falasca M, Harroch S, Felsenfeld DP, Sheetz MP, et al. Pyk2 regulates multiple signaling events crucial for macrophage morphology and migration. Proc Natl Acad Sci USA 2003;100:10740–5.

    PubMed  CAS  Google Scholar 

  82. Wang Q, Xie Y, Du QS, Wu X, Feng X, Mei L, et al. Regulation of the formation of osteoclastic actin rings by proline-rich tyrosine kinase 2 interacting with gelsolin. J Cell Biol 2003;160:565–75.

    PubMed  CAS  Google Scholar 

  83. Zhang Z, Neff L, Bothwell AL, Baron R, Horne WC. Calcitonin induces dephosphorylation of Pyk2 and phosphorylation of focal adhesion kinase in osteoclasts. Bone 2002;31:359–65.

    PubMed  CAS  Google Scholar 

  84. Berry V, Rathod H, Pulman LB, Datta HK. Immunofluorescent evidence for the abundance of focal adhesion kinase in the human and avian osteoclasts and its down regulation by calcitonin. J Endocrinol 1994;141:R11–5.

    PubMed  CAS  Google Scholar 

  85. Tanaka S, Takahashi N, Udagawa N, Murakami H, Nakamura I, Kurokawa T, et al. Possible involvement of focal adhesion kinase, p125FAK, in osteoclastic bone resorption. J Cell Biochem 1995;58:424–35.

    PubMed  CAS  Google Scholar 

  86. Butler B, Blystone SD. Tyrosine phosphorylation of beta3 integrin provides a binding site for Pyk2. J Biol Chem 2005;280:14556–62.

    PubMed  CAS  Google Scholar 

  87. Lakkakorpi PT, Bett AJ, Lipfert L, Rodan GA, Duong LT. PYK2 autophosphorylation, but not kinase activity, is necessary for adhesion-induced association with c-Src, osteoclast spreading, and bone resorption. J Biol Chem 2003;278:11502–12.

    PubMed  CAS  Google Scholar 

  88. Faccio R, Takeshita S, Zallone A, Ross FP, Teitelbaum SL. c-Fms and the alphavbeta3 integrin collaborate during osteoclast differentiation. J Clin Invest 2003;111:749–58.

    PubMed  CAS  Google Scholar 

  89. Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 1996;383:547–50.

    PubMed  CAS  Google Scholar 

  90. Chiusaroli R, Sanjay A, Henriksen K, Engsig MT, Horne WC, Gu H, et al. Deletion of the gene encoding c-Cbl alters the ability of osteoclasts to migrate, delaying resorption and ossification of cartilage during the development of long bones. Dev Biol 2003;261:537–47.

    PubMed  CAS  Google Scholar 

  91. Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H, et al. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. EMBO J 1994;13:3748–56.

    PubMed  CAS  Google Scholar 

  92. Nasertorabi F, Garcia-Guzman M, Briknarova K, Larsen E, Havert ML, Vuori K, et al. Organization of functional domains in the docking protein p130Cas. Biochem Biophys Res Commun 2004;324:993–8.

    PubMed  CAS  Google Scholar 

  93. Lakkakorpi PT, Nakamura I, Nagy RM, Parsons JT, Rodan GA, Duong LT. Stable association of PYK2 and p130(Cas) in osteoclasts and their co-localization in the sealing zone. J Biol Chem 1999;274:4900–7.

    PubMed  CAS  Google Scholar 

  94. Cary LA, Han DC, Polte TR, Hanks SK, Guan JL. Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. J Cell Biol 1998;140:211–21.

    PubMed  CAS  Google Scholar 

  95. Klemke RL, Leng J, Molander R, Brooks PC, Vuori K, Cheresh DA. CAS/Crk coupling serves as a “molecular switch” for induction of cell migration. J Cell Biol 1998;140:961–72.

    PubMed  CAS  Google Scholar 

  96. Fukazawa T, Reedquist KA, Trub T, Soltoff S, Panchamoorthy G, Druker B, et al. The SH3 domain-binding T cell tyrosyl phosphoprotein p120. Demonstration of its identity with the c-cbl protooncogene product and in vivo complexes with Fyn, Grb2, and phosphatidylinositol 3-kinase. J Biol Chem 1995;270:19141–50.

    PubMed  CAS  Google Scholar 

  97. Soltoff SP, Cantley LC. p120cbl is a cytosolic adapter protein that associates with phosphoinositide 3-kinase in response to epidermal growth factor in PC12 and other cells. J Biol Chem 1996;271:563–7.

    PubMed  CAS  Google Scholar 

  98. de Jong R, ten Hoeve J, Heisterkamp N, Groffen J. Crkl is complexed with tyrosine-phosphorylated Cbl in Ph-positive leukemia. J Biol Chem 1995;270:21468–71.

    PubMed  Google Scholar 

  99. Andoniou CE, Thien CB, Langdon WY. The two major sites of cbl tyrosine phosphorylation in abl-transformed cells select the crkL SH2 domain. Oncogene 1996;12:1981–9.

    PubMed  CAS  Google Scholar 

  100. Ribon V, Hubbell S, Herrera R, Saltiel AR. The product of the cbl oncogene forms stable complexes in vivo with endogenous Crk in a tyrosine phosphorylation-dependent manner. Mol Cell Biol 1996;16:45–52.

    PubMed  CAS  Google Scholar 

  101. Marengere LE, Mirtsos C, Kozieradzki I,Veillette A, Mak TW, Penninger JM. Proto-oncoprotein Vav interacts with c-Cbl in activated thymocytes and peripheral T cells. J Immunol 1997;159:70–6.

    PubMed  CAS  Google Scholar 

  102. Fukazawa T, Miyake S, Band V, Band H. Tyrosine phosphorylation of Cbl upon epidermal growth factor (EGF) stimulation and its association with EGF receptor and downstream signaling proteins. J Biol Chem 1996;271:14554–9.

    PubMed  CAS  Google Scholar 

  103. Shishido T, Akagi T, Ouchi T, Georgescu MM, Langdon WY, Hanafusa H. The kinase-deficient Src acts as a suppressor of the Abl kinase for Cbl phosphorylation. Proc Natl Acad Sci USA 2000;97:6439–44.

    PubMed  CAS  Google Scholar 

  104. Szymkiewicz I, Destaing O, Jurdic P, Dikic I. SH3P2 in complex with Cbl and Src. FEBS Lett 2004;565:33–8.

    PubMed  CAS  Google Scholar 

  105. Kirsch KH, Georgescu MM, Shishido T, Langdon WY, Birge RB, Hanafusa H. The adapter type protein CMS/CD2AP binds to the proto-oncogenic protein c-Cbl through a tyrosine phosphorylation-regulated Src homology 3 domain interaction. J Biol Chem 2001;276:4957–63.

    PubMed  CAS  Google Scholar 

  106. Petrelli A, Gilestro GF, Lanzardo S, Comoglio PM, Migone N, Giordano S. The endophilin–CIN85–Cbl complex mediates ligand-dependent downregulation of c-Met. Nature 2002;416: 187–90.

    PubMed  CAS  Google Scholar 

  107. Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I. Cbl–CIN85–endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 2002;416:183–7.

    PubMed  CAS  Google Scholar 

  108. Szymkiewicz I, Kowanetz K, Soubeyran P, Dinarina A, Lipkowitz S, Dikic I. CIN85 participates in Cbl-b-mediated downregulation of receptor tyrosine kinases. J Biol Chem 2002.

  109. Yokouchi M, Kondo T, Houghton A, Bartkiewicz M, Horne WC, Zhang H, et al. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J Biol Chem 1999;274:31707–12.

    PubMed  CAS  Google Scholar 

  110. Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 1999;4:1029–40.

    PubMed  CAS  Google Scholar 

  111. Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 1999;286:309–12.

    PubMed  CAS  Google Scholar 

  112. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998;67:425–79.

    PubMed  CAS  Google Scholar 

  113. Hicke L. Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins. FASEB J 1997;11:1215–26.

    PubMed  CAS  Google Scholar 

  114. Dikic I, Giordano S. Negative receptor signalling. Curr Opin Cell Biol 2003;15:128–35.

    PubMed  CAS  Google Scholar 

  115. Wu X, Gan B, Yoo Y, Guan JL. FAK-Mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Dev Cell 2005;9:185–96.

    PubMed  CAS  Google Scholar 

  116. Feshchenko EA, Langdon WY, Tsygankov AY. Fyn, Yes, and Syk phosphorylation sites in c-Cbl map to the same tyrosine residues that become phosphorylated in activated T cells. J Biol Chem 1998;273:8323–31.

    PubMed  CAS  Google Scholar 

  117. Ribon V, Printen JA, Hoffman NG, Kay BK, Saltiel AR. A novel, multifuntional c-Cbl binding protein in insulin receptor signaling in 3T3-L1 adipocytes. Mol Cell Biol 1998;18:872–9.

    PubMed  CAS  Google Scholar 

  118. Scaife RM, Langdon WY. c-Cbl localizes to actin lamellae and regulates lamellipodia formation and cell morphology. J Cell Sci 2000;113(Pt 2):215–26.

    PubMed  CAS  Google Scholar 

  119. Krawczyk CM, Jones RG, Atfield A, Bachmaier K, Arya S, Odermatt B, et al. Differential control of CD28-regulated in vivo immunity by the E3 ligase Cbl-b. J Immunol 2005;174:1472–8.

    PubMed  CAS  Google Scholar 

  120. Meng F, Lowell CA. A beta 1 integrin signaling pathway involving Src-family kinases, Cbl and PI-3 kinase is required for macrophage spreading and migration. EMBO J 1998;17:4391–403.

    PubMed  CAS  Google Scholar 

  121. Feshchenko EA, Shore SK, Tsygankov AY. Tyrosine phosphorylation of C-Cbl facilitates adhesion and spreading while suppressing anchorage-independent growth of V-Abl-transformed NIH3T3 fibroblasts. Oncogene 1999;18:3703–15.

    PubMed  CAS  Google Scholar 

  122. Marchisio PC, Cirillo D, Naldini L, Primavera MV, Teti A, Zambonin-Zallone A. Cell–substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol 1984;99:1696–705.

    PubMed  CAS  Google Scholar 

  123. Marchisio PC, Bergui L, Corbascio GC, Cremona O, D’Urso N, Schena M, et al. Vinculin, talin, and integrins are localized at specific adhesion sites of malignant B lymphocytes. Blood 1988;72:830–3.

    PubMed  CAS  Google Scholar 

  124. Luxenburg C, Addadi L, Geiger B. The molecular dynamics of osteoclast adhesions. Eur J Cell Biol 2006;85:203–11.

    PubMed  CAS  Google Scholar 

  125. Chiusaroli R, Knobler H, Luxenburg C, Sanjay A, Granot-Attas S, Tiran Z, et al. Tyrosine phosphatase epsilon is a positive regulator of osteoclast function in vitro and in vivo. Mol Biol Cell 2004;15:234–44.

    PubMed  CAS  Google Scholar 

  126. Wu LW, Baylink DJ, Lau KH. Molecular cloning and expression of a unique rabbit osteoclastic phosphotyrosyl phosphatase. Biochem J 1996;316(Pt 2):515–23.

    PubMed  CAS  Google Scholar 

  127. Suhr SM, Pamula S, Baylink DJ, Lau KH. Antisense oligodeoxynucleotide evidence that a unique osteoclastic protein–tyrosine phosphatase is essential for osteoclastic resorption. J Bone Miner Res 2001;16:1795–803.

    PubMed  CAS  Google Scholar 

  128. Haque SJ, Harbor P, Tabrizi M, Yi T, Williams BR. Protein–tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13-dependent signal transduction. J Biol Chem 1998;273:33893–6.

    PubMed  CAS  Google Scholar 

  129. Dong Q, Siminovitch KA, Fialkow L, Fukushima T, Downey GP. Negative regulation of myeloid cell proliferation and function by the SH2 domain-containing tyrosine phosphatase-1. J Immunol 1999;162:3220–30.

    PubMed  CAS  Google Scholar 

  130. Aoki K, DiDomenico E, Sims NA, Mukhopadhyay K, Neff L, Houghton A, et al. The tyrosine phosphatase SHP-1 is a negative regulator of osteoclastogenesis and osteoclast resorbing activity: increased resorption and osteopenia in me(v)/me(v) mutant mice. Bone 1999;25:261–7.

    PubMed  CAS  Google Scholar 

  131. Umeda S, Beamer WG, Takagi K, Naito M, Hayashi S, Yonemitsu H, et al. Deficiency of SHP-1 protein–tyrosine phosphatase activity results in heightened osteoclast function and decreased bone density. Am J Pathol 1999;155:223–33.

    PubMed  CAS  Google Scholar 

  132. Ganju RK, Brubaker SA, Chernock RD, Avraham S, Groopman JE. Beta-chemokine receptor CCR5 signals through SHP1, SHP2, and Syk. J Biol Chem 2000;275:17263–8.

    PubMed  CAS  Google Scholar 

  133. Lawson MA, Maxfield FR. Ca(2+)- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 1995;377:75–9.

    PubMed  CAS  Google Scholar 

  134. Takeshita S, Namba N, Zhao JJ, Jiang Y, Genant HK, Silva MJ, et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med 2002;8:943–9.

    PubMed  CAS  Google Scholar 

  135. Marks B, Stowell MH, Vallis Y, Mills IG, Gibson A, Hopkins CR, et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 2001;410:231–5.

    PubMed  CAS  Google Scholar 

  136. Takei K, Yoshida Y, Yamada H. Regulatory mechanisms of dynamin-dependent endocytosis. J Biochem (Tokyo) 2005;137:243–7.

    CAS  Google Scholar 

  137. Schafer DA. Regulating actin dynamics at membranes: a focus on dynamin. Traffic 2004;5:463–9.

    PubMed  CAS  Google Scholar 

  138. Herskovits JS, Shpetner HS, Burgess CC, Vallee RB. Microtubules and Src homology 3 domains stimulate the dynamin GTPase via its C-terminal domain. Proc Natl Acad Sci USA 1993;90:11468–72.

    PubMed  CAS  Google Scholar 

  139. Miller WE, Maudsley S, Ahn S, Khan KD, Luttrell LM, Lefkowitz RJ. Beta-arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis. J Biol Chem 2000;275:11312–9.

    PubMed  CAS  Google Scholar 

  140. Ahn S, Kim J, Lucaveche CL, Reedy MC, Luttrell LM, Lefkowitz RJ, et al. Src-dependent tyrosine phosphorylation regulates dynamin self-assembly and ligand-induced endocytosis of the epidermal growth factor receptor. J Biol Chem 2002;277:26642–51.

    PubMed  CAS  Google Scholar 

  141. Qualmann B, Kessels MM, Kelly RB. Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol 2000;150:F111–6.

    PubMed  CAS  Google Scholar 

  142. Slepnev VI, DeCamilli P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci 2000;1:161–72.

    PubMed  CAS  Google Scholar 

  143. Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J 2000;348(Pt 2):241–55.

    PubMed  CAS  Google Scholar 

  144. Cao H, Garcia F, McNiven MA. Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 1998;9:2595–609.

    PubMed  CAS  Google Scholar 

  145. Damke H, Baba T, Warnock DE, Schmid SL. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 1994;127:915–34.

    PubMed  CAS  Google Scholar 

  146. Le Roy C, Wrana JL. Signaling and endocytosis: a team effort for cell migration. Dev Cell 2005;9:167–8.

    PubMed  Google Scholar 

  147. Sever S, Damke H, Schmid SL. Dynamin:GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J Cell Biol 2000;150:1137–48.

    PubMed  CAS  Google Scholar 

  148. Wiejak J, Wyroba E. Dynamin: characteristics, mechanism of action and function. Cell Mol Biol Lett 2002;7:1073–80.

    PubMed  CAS  Google Scholar 

  149. Reutens AT, Glenn BC. Endophilin-1: a multifunctional protein. Int J Biochem Cell Biol 2002;34:1173–7.

    PubMed  CAS  Google Scholar 

  150. Destaing O, Saltel F, Gilquin B, Chabadel A, Khochbin S, Ory S, et al. A novel Rho–mDia2–HDAC6 pathway controls podosome patterning through microtubule acetylation in osteoclasts. J Cell Sci 2005;118:2901–11.

    PubMed  CAS  Google Scholar 

  151. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002;420:629–35.

    PubMed  CAS  Google Scholar 

  152. Faccio R, Teitelbaum SL, Fujikawa K, Chappel J, Zallone A, Tybulewicz, VL, et al. Vav3 regulates osteoclast function and bone mass. Nat Med 2005;11:284–90.

    PubMed  CAS  Google Scholar 

  153. Saltel F, Destaing O, Bard F, Eichert D, Jurdic P. Apatite-mediated actin dynamics in resorbing osteoclasts. Mol Biol Cell 2004;15:5231–41.

    PubMed  CAS  Google Scholar 

  154. Chellaiah MA, Soga N, Swanson S, McAllister S, Alvarez U, Wang D, et al. Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J Biol Chem 2000;275:11993–2002.

    PubMed  CAS  Google Scholar 

  155. Razzouk S, Lieberherr M, Cournot G. Rac-GTPase, osteoclast cytoskeleton and bone resorption. Eur J Cell Biol 1999;78:249–55.

    PubMed  CAS  Google Scholar 

  156. Clark EA, King WG, Brugge JS, Symons M, Hynes RO. Integrin-mediated signals regulated by members of the rho family of GTPases. J Cell Biol 1998;142:573–86.

    PubMed  CAS  Google Scholar 

  157. Ridley AJ, Allen WE, Peppelenbosch M, Jones GE. Rho family proteins and cell migration. Biochem Soc Symp 1999;65:111–23.

    PubMed  CAS  Google Scholar 

  158. Ory S, Munari-Silem Y, Fort P, Jurdic P. Rho and Rac exert antagonistic functions on spreading of macrophage-derived multinucleated cells and are not required for actin fiber formation. J Cell Sci 2000;113(Pt 7):1177–88

    PubMed  CAS  Google Scholar 

  159. Teti A, Migliaccio S, Taranta A, Bernardini S, De Rossi G, Luciani M, et al. Mechanisms of osteoclast dysfunction in human osteopetrosis: abnormal osteoclastogenesis and lack of osteoclast-specific adhesion structures. J Bone Miner Res 1999;14: 2107–17.

    PubMed  CAS  Google Scholar 

  160. Stossel TP. From signal to pseudopod. How cells control cytoplasmic actin assembly. J Biol Chem 1989;264:18261–4.

    PubMed  CAS  Google Scholar 

  161. Janmey PA and Stossel TP. Gelsolin–polyphosphoinositide interaction. Full expression of gelsolin-inhibiting function by polyphosphoinositides in vesicular form and inactivation by dilution, aggregation, or masking of the inositol head group. J Biol Chem 1989;264:4825–31.

    PubMed  CAS  Google Scholar 

  162. Janmey PA, Stossel TP, Allen PG. Deconstructing gelsolin: identifying sites that mimic or alter binding to actin and phosphoinositides. Chem Biol 1998;5:R81–5.

    PubMed  CAS  Google Scholar 

  163. Kallio DM, Garant PR, Minkin C. Ultrastructural effects of calcitonin on osteoclasts in tissue culture. J Ultrastruct Res 1972; 39:205–16.

    PubMed  CAS  Google Scholar 

  164. Holtrop ME, Raisz LG, Simmons HA. The effects of parathyroid hormone, colchicine, and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture. J Cell Biol 1974;60:346–55.

    PubMed  CAS  Google Scholar 

  165. Chambers TJ. Osteoblasts release osteoclasts from calcitonin-induced quiescence. J Cell Sci 1982;57:247–60.

    PubMed  CAS  Google Scholar 

  166. Chambers TJ, Athanasou NA, Fuller K. Effect of parathyroid hormone and calcitonin on the cytoplasmic spreading of isolated osteoclasts. J Endocrinol 1984;102:281–6.

    Article  PubMed  CAS  Google Scholar 

  167. Zaidi M, Datta HK, Moonga BS, MacIntyre I. Evidence that the action of calcitonin on rat osteoclasts is mediated by two G proteins acting via separate post-receptor pathways. J Endocrinol 1990;126:473–81.

    PubMed  CAS  Google Scholar 

  168. Chabre O, Conklin BR, Lin HY, Lodish HF, Wilson E, Ives HE, et al. A recombinant calcitonin receptor independently stimulates 3′,5′-cyclic adenosine monophosphate and Ca2+/inositol phosphate signaling pathways. Mol Endocrinol 1992;6:551–6.

    Google Scholar 

  169. Force T, Bonventre JV, Flannery MR, Gorn AH, Yamin M, Goldring SR. A cloned porcine renal calcitonin receptor couples to adenylyl cyclase and phospholipase C Am J Physiol 1992; 262:F1110–5.

    PubMed  CAS  Google Scholar 

  170. Shyu JF, Inoue D, Baron R, Horne WC. The deletion of 14 amino acids in the seventh transmembrane domain of a naturally occurring calcitonin receptor isoform alters ligand binding and selectively abolishes coupling to phospholipase C. J Biol Chem 1996;271:31127–34.

    PubMed  CAS  Google Scholar 

  171. Chen Y, Shyu JF, Santhanagopal A, Inoue D, David JP, Dixon SJ, et al. The calcitonin receptor stimulates Shc tyrosine phosphorylation and Erk1/2 activation. Involvement of Gi, protein kinase C, and calcium. J Biol Chem 1998;273:19809–16.

    PubMed  CAS  Google Scholar 

  172. Shyu JF, Zhang Z, Hernandez-Lagunas L, Camerino C, Chen Y, Inoue D, et al. Protein kinase C antagonizes pertussis-toxin-sensitive coupling of the calcitonin receptor to adenylyl cyclase. Eur J Biochem 1999;262:95–101.

    PubMed  CAS  Google Scholar 

  173. Naro F, Perez M, Migliaccio S, Galson DL, Orcel P, Teti A, et al. Phospholipase D- and protein kinase C isoenzyme-dependent signal transduction pathways activated by the calcitonin receptor. Endocrinology 1998;139:3241–8.

    PubMed  CAS  Google Scholar 

  174. Zhang Z, Hernandez-Lagunas L, Horne WC, Baron R. Cytoskeleton-dependent tyrosine phosphorylation of the p130(Cas) family member HEF1 downstream of the G protein-coupled calcitonin receptor. Calcitonin induces the association of HEF1, paxillin, and focal adhesion kinase. J Biol Chem 1999;274: 25093–8.

    PubMed  CAS  Google Scholar 

  175. Zhang Z, Baron R, Horne WC. Integrin engagement, the actin cytoskeleton, and c-Src are required for the calcitonin-induced tyrosine phosphorylation of paxillin and HEF1, but not for calcitonin-induced Erk1/2 phosphorylation. J Biol Chem 2000; 275:37219–23.

    PubMed  CAS  Google Scholar 

  176. Della Rocca GJ, Maudsley S, Daaka Y, Lefkowitz RJ, Luttrell LM. Pleiotropic coupling of G protein-coupled receptors to the mitogen-activated protein kinase cascade. Role of focal adhesions and receptor tyrosine kinases. J Biol Chem 1999;274: 13978–84.

    PubMed  CAS  Google Scholar 

  177. Della Rocca GJ, van Biesen T, Daaka Y, Luttrell DK, Luttrell LM, Lefkowitz RJ. Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J Biol Chem 1997;272:19125–32.

    PubMed  CAS  Google Scholar 

  178. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990;345:442–4.

    PubMed  CAS  Google Scholar 

  179. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165–76.

    PubMed  CAS  Google Scholar 

  180. Yoshida H, Enomoto H, Kawamura K, Takenaga K, Tanabe M, Ohnuma N, et al. Antitumor vaccine effect of irradiated murine neuroblastoma cells producing interleukin-2 or granulocyte macrophage-colony stimulating factor. Int J Oncol 1998;13:73–8.

    PubMed  CAS  Google Scholar 

  181. Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, et al. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 1990;87:7260–4.

    PubMed  CAS  Google Scholar 

  182. Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 1999;190: 1741–54.

    PubMed  CAS  Google Scholar 

  183. Suda T, Takahashi N, Martin TJ. Modulation of osteoclast differentiation. Endocr Rev 1992;13:66–80.

    PubMed  CAS  Google Scholar 

  184. Teitelbaum SL. Osteoclasts, integrins, and osteoporosis. J Bone Miner Metab 2000;18:344–9.

    PubMed  CAS  Google Scholar 

  185. Dai Z, Kerzic P, Schroeder WG, McNiece IK. Deletion of the SRC homology 3 domain and C-terminal proline-rich sequences in BCR-ABL prevents interactor 2 degradation, spontaneous cell migration, and impairs leukemogenesis. J Biol Chem 2001;276: 28954–60.

    Google Scholar 

  186. Yeung YG, Wang Y, Einstein DB, Lee PS, Stanley ER. Colony-stimulating factor-1 stimulates the formation of multimeric cytosolic complexes of signaling proteins and cytoskeletal components in macrophages. J Biol Chem 1998;273:17128–37.

    PubMed  CAS  Google Scholar 

  187. Insogna K, Tanaka S, Neff L, Horne W, Levy J, Baron R. Role of c-Src in cellular events associated with colony-stimulating factor-1-induced spreading in osteoclasts. Mol Reprod Dev 1997;46:104–8.

    PubMed  CAS  Google Scholar 

  188. Insogna KL, Sahni M, Grey AB, Tanaka S, Horne WC, Neff L, et al. Colony-stimulating factor-1 induces cytoskeletal reorganization and c-src-dependent tyrosine phosphorylation of selected cellular proteins in rodent osteoclasts. J Clin Invest 1997;100: 2476–85.

    Article  PubMed  CAS  Google Scholar 

  189. Palacio S, Felix R. The role of phosphoinositide 3-kinase in spreading osteoclasts induced by colony-stimulating factor-1. Eur J Endocrinol 2001;144:431–40.

    PubMed  CAS  Google Scholar 

  190. Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ. Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med 1993;178:1733–44.

    PubMed  CAS  Google Scholar 

  191. Jones TC. The effects of rhGM-CSF on macrophage function. Eur J Cancer 1993;29A(Suppl 3):S10–3.

    Google Scholar 

  192. Munugalavadla V, Borneo J, Ingram DA, Kapur R. p85alpha subunit of class IA PI-3 kinase is crucial for macrophage growth and migration. Blood 2005;106:103–9.

    PubMed  CAS  Google Scholar 

  193. Ota J, Sato K, Kimura F, Wakimoto N, Nakamura Y, Nagata N, et al. Association of Cbl with Fms and p85 in response to macrophage colony-stimulating factor. FEBS Lett 2000;466:96–100.

    PubMed  CAS  Google Scholar 

  194. Lee PS, Wang Y, Dominguez MG, Yeung YG, Murphy MA, Bowtell DD, et al. The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J 1999;18:3616–28.

    PubMed  CAS  Google Scholar 

  195. Yang FC, Atkinson SJ, Gu Y, Borneo JB, Roberts AW, Zheng Y, et al. Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization. Proc Natl Acad Sci USA 2001;98:5614–18.

    PubMed  CAS  Google Scholar 

  196. Croker BA, Tarlinton DM, Cluse LA, Tuxen AJ, Light A, Yang FC, et al. The Rac2 guanosine triphosphatase regulates B lymphocyte antigen receptor responses and chemotaxis and is required for establishment of B-1a and marginal zone B lymphocytes. J Immunol 2002;168:3376–86.

    PubMed  CAS  Google Scholar 

  197. Allen WE, Jones GE, Pollard JW, Ridley AJ. Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J Cell Sci 1997;110(Pt 6):707–20.

    PubMed  CAS  Google Scholar 

  198. Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, Greenberg S. Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 1997;186:1487–94.

    PubMed  CAS  Google Scholar 

  199. Wells CM, Walmsley M, Ooi S, Tybulewicz V, Ridley AJ. Rac1-deficient macrophages exhibit defects in cell spreading and membrane ruffling but not migration. J Cell Sci 2004;117:1259–68.

    PubMed  CAS  Google Scholar 

  200. Darnay BG, Haridas V, Ni J, Moore PA, Aggarwal BB. Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem 1998;273:20551–5.

    PubMed  CAS  Google Scholar 

  201. Galibert L, Tometsko ME, Anderson DM, Cosman D, Dougall WC. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily. J Biol Chem 1998;273:34120–7.

    PubMed  CAS  Google Scholar 

  202. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 1999; 96:3540–5.

    PubMed  CAS  Google Scholar 

  203. Reddy SV. Regulatory mechanisms operative in osteoclasts. Crit Rev Eukaryot Gene Expr 2004;14:255–70.

    PubMed  CAS  Google Scholar 

  204. Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 2000;275:31155–61.

    PubMed  CAS  Google Scholar 

  205. Lee SW, Han SI, Kim HH, Lee ZH. TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-kappaB. J Biochem Mol Biol 2002;35:371–6.

    PubMed  Google Scholar 

  206. Tanaka S, Nakamura I, Inoue J, Oda H, Nakamura K. Signal transduction pathways regulating osteoclast differentiation and function. J Bone Miner Metab 2003;21:123–33.

    PubMed  Google Scholar 

  207. Inoue M, Ross FP, Erdmann JM, Abu-Amer Y, Wei S, Teitelbaum SL. Tumor necrosis factor alpha regulates alpha(v)beta5 integrin expression by osteoclast precursors in vitro and in vivo. Endocrinology 2000;141:284–90.

    PubMed  CAS  Google Scholar 

  208. Nakamura T, Yamashita H, Nagano Y, Takahashi T, Avraham S, Avraham H, et al. Activation of Pyk2/RAFTK induces tyrosine phosphorylation of alpha-synuclein via Src-family kinases. FEBS Lett 2002;521:190–4.

    PubMed  CAS  Google Scholar 

  209. Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 1999;4:1041–9.

    PubMed  CAS  Google Scholar 

  210. Arron JR, Vologodskaia M, Wong BR, Naramura M, Kim N, Gu H, et al. A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (trance) and CD40L-mediated Akt activation. J Biol Chem 2001;276: 30011–7.

    PubMed  CAS  Google Scholar 

  211. Kobayashi N, Kadono Y, Naito A, Matsumoto K, Yamamoto T, Tanaka S, et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 2001;20:1271–80.

    PubMed  CAS  Google Scholar 

  212. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999;13:1015–24.

    PubMed  CAS  Google Scholar 

  213. Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 1999;4:353–62.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. C. Itzstein for critically reading this manuscript and Lynn Neff for providing confocal images. This work was funded in part by grants from the National Institutes of Health to R. Baron (DE04724 and AR42927) and by a Pilot and Feasibility Grant from the Yale Core Center for Musculoskeletal Disorders to A. Bruzzaniti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Bruzzaniti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruzzaniti, A., Baron, R. Molecular regulation of osteoclast activity. Rev Endocr Metab Disord 7, 123–139 (2006). https://doi.org/10.1007/s11154-006-9009-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-006-9009-x

Keywords

Navigation