Skip to main content

Advertisement

Log in

Cerebral Radiation Necrosis: Incidence, Pathogenesis, Diagnostic Challenges, and Future Opportunities

  • Neuro-oncology (Y Umemura, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cerebral radiation necrosis (CRN) is a major dose-limiting adverse event of radiotherapy. The incidence rate of RN varies with the radiotherapy modality, total dose, dose fractionation, and the nature of the lesion being targeted. In addition to these known and controllable features, there is a stochastic component to the occurrence of CRN—the genetic profile of the host or the lesion and their role in the development of CRN.

Recent Findings

Recent studies provide some insight into the genetic mechanisms underlying radiation-induced brain injury. In addition to these incompletely understood host factors, the diagnostic criteria for CRN using structural and functional imaging are also not clear, though multiple structural and functional imaging modalities exist, a combination of which may prove to be the ideal diagnostic imaging approach. As the utilization of novel molecular therapies and immunotherapy increases, the incidence of CRN is expected to increase and its diagnosis will become more challenging. Tissue biopsies can be insensitive and suffer from sampling biases and procedural risks. Liquid biopsies represent a promising, accurate, and non-invasive diagnostic strategy, though this modality is currently in its infancy.

Summary

A better understanding of the pathogenesis of CRN will expand and optimize the diagnosis and management of CRN by better utilizing existing treatment options including bevacizumab, pentoxifylline, hyperbaric oxygen therapy, and laser interstitial thermal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Chao ST, Ahluwalia MS, Barnett GH, Stevens GHJ, Murphy ES, Stockham AL, et al. Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol. 2013;87:449–57. https://doi.org/10.1016/j.ijrobp.2013.05.015.

    Article  Google Scholar 

  2. Fischer AW, Holfelder H. Lokales Amyloid im Gehirn. Dtsch Zeitschrift Für Chir. 1930;227:475–83. https://doi.org/10.1007/BF02792795.

    Article  Google Scholar 

  3. Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys. 1980;6:1215–28.

    Article  CAS  Google Scholar 

  4. Rahmathulla G, Marko NF, Weil RJ. Cerebral radiation necrosis: a review of the pathobiology, diagnosis and management considerations. J Clin Neurosci. 2013;20:485–502. https://doi.org/10.1016/j.jocn.2012.09.011.

    Article  PubMed  Google Scholar 

  5. Gutin PH, Prados MD, Phillips TL, Wara WM, Larson DA, Leibel SA, et al. External irradiation followed by an interstitial high activity iodine-125 implant "boost" in the initial treatment of malignant gliomas: NCOG study 6G-82-2. Int J Radiat Oncol Biol Phys. 1991;21:601–6.

  6. Shaw E, Arusell R, Scheithauer B, O’Fallon J, O’Neill B, Dinapoli R, et al. Prospective randomized trial of low- versus high-dose radiation therapy in adults with Supratentorial low-grade glioma: initial report of a north central cancer treatment group/radiation therapy oncology group/eastern cooperative oncology group study. J Clin Oncol. 2002;20:2267–76. https://doi.org/10.1200/JCO.2002.09.126.

    Article  CAS  Google Scholar 

  7. Corn BW, Yousem DM, Scott CB, Rotman M, Asbell SO, Nelson DF, et al. White matter changes are correlated significantly with radiation dose. Observations from a randomized dose-escalation trial for malignant glioma (radiation therapy oncology group 83-02). Cancer. 1994;74:2828–35. https://doi.org/10.1002/1097-0142(19941115)74:10<2828::AID-CNCR2820741014>3.0.CO;2-K.

    Article  CAS  Google Scholar 

  8. Fetcko K, Lukas RV, Watson GA, Zhang L, Dey M. Survival and complications of stereotactic radiosurgery. Medicine (Baltimore). 2017;96:e8293. https://doi.org/10.1097/MD.0000000000008293.

    Article  Google Scholar 

  9. Cabrera AR, Cuneo KC, Desjardins A, Sampson JH, McSherry F, Herndon JE, et al. Concurrent stereotactic radiosurgery and bevacizumab in recurrent malignant gliomas: a prospective trial. Int J Radiat Oncol. 2013;86:873–9. https://doi.org/10.1016/j.ijrobp.2013.04.029.

    Article  CAS  Google Scholar 

  10. Gerosa M, Nicolato A, Foroni R, Zanotti B, Tomazzoli L, Miscusi M, et al. Gamma knife radiosurgery for brain metastases: a primary therapeutic option. J Neurosurg. 2002;97(5 Suppl):515–24.

    Article  Google Scholar 

  11. Petrovich Z, Yu C, Giannotta SL, O’Day S, Apuzzo ML. Survival and pattern of failure in brain metastasis treated with stereotactic gamma knife radiosurgery. J Neurosurg. 2002;97(5 Suppl):499–506.

    Article  Google Scholar 

  12. Kim JW, Park HR, Lee JM, Kim JW, Chung H-T, Kim DG, et al. Fractionated stereotactic gamma knife radiosurgery for large brain metastases: a retrospective, Single Center Study. PLoS One. 2016;11:e0163304. https://doi.org/10.1371/journal.pone.0163304.

    Article  Google Scholar 

  13. Koffer P, Chan J, Rava P, Gorovets D, Ebner D, Savir G, et al. Repeat stereotactic radiosurgery for locally recurrent brain metastases. World Neurosurg. 2017;104:589–93. https://doi.org/10.1016/j.wneu.2017.04.103.

    Article  Google Scholar 

  14. Jeong WJ, Park JH, Lee EJ, Kim JH, Kim CJ, Cho YH. Efficacy and safety of fractionated stereotactic radiosurgery for large brain metastases. J Korean Neurosurg Soc. 2015;58:217–24. https://doi.org/10.3340/jkns.2015.58.3.217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prabhu RS, Press RH, Patel KR, Boselli DM, Symanowski JT, Lankford SP, et al. Single-fraction stereotactic radiosurgery (SRS) alone versus surgical resection and SRS for large brain metastases: a multi-institutional analysis. Int J Radiat Oncol. 2017;99:459–67. https://doi.org/10.1016/j.ijrobp.2017.04.006.

    Article  Google Scholar 

  16. Minniti G, Scaringi C, Paolini S, Lanzetta G, Romano A, Cicone F, et al. Single-fraction versus multifraction (3 × 9 Gy) stereotactic radiosurgery for large (&gt;2 cm) brain metastases: a comparative analysis of local control and risk of radiation-induced brain necrosis. Int J Radiat Oncol. 2016;95:1142–8. https://doi.org/10.1016/j.ijrobp.2016.03.013.

    Article  Google Scholar 

  17. Narloch JL, Farber SH, Sammons S, McSherry F, Herndon JE, Hoang JK, et al. Biopsy of enlarging lesions after stereotactic radiosurgery for brain metastases frequently reveals radiation necrosis. Neuro-Oncology. 2017;19:1391–7. https://doi.org/10.1093/neuonc/nox090.

    Article  Google Scholar 

  18. Kim JM, Miller JA, Kotecha R, Xiao R, Juloori A, Ward MC, et al. The risk of radiation necrosis following stereotactic radiosurgery with concurrent systemic therapies. J Neuro-Oncol. 2017;133:357–68. https://doi.org/10.1007/s11060-017-2442-8.

    Article  Google Scholar 

  19. Lehrer EJ, Peterson J, Brown PD, Sheehan JP, Quiñones-Hinojosa A, Zaorsky NG, et al. Treatment of brain metastases with stereotactic radiosurgery and immune checkpoint inhibitors: an international meta-analysis of individual patient data. Radiother Oncol. 2018;130:104–12. https://doi.org/10.1016/j.radonc.2018.08.025.

    Article  Google Scholar 

  20. Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose–volume effects in the brain. Int J Radiat Oncol. 2010;76:S20–7. https://doi.org/10.1016/j.ijrobp.2009.02.091.

    Article  Google Scholar 

  21. Voges J, Treuer H, Lehrke R, Kocher M, Staar S, Müller RP, et al. Risk analysis of LINAC radiosurgery in patients with arteriovenous malformation (AVM). Acta Neurochir Suppl. 1997;68:118–23.

  22. Flickinger JC, Lunsford LD, Kondziolka D, Maitz AH, Epstein AH, Simons SR, et al. Radiosurgery and brain tolerance: an analysis of neurodiagnostic imaging changes after gamma knife radiosurgery for arteriovenous malformations. Int J Radiat Oncol Biol Phys. 1992;23:19–26.

    Article  CAS  Google Scholar 

  23. Abdulla S, Saada J, Johnson G, Jefferies S, Ajithkumar T. Tumour progression or pseudoprogression? A review of post-treatment radiological appearances of glioblastoma. Clin Radiol. 2015;70:1299–312. https://doi.org/10.1016/j.crad.2015.06.096.

    Article  CAS  PubMed  Google Scholar 

  24. Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis. Oncogene. 2003;22:5897–906. https://doi.org/10.1038/sj.onc.1206702.

    Article  CAS  PubMed  Google Scholar 

  25. Remler MP, Marcussen WH, Tiller-Borsich J. The late effects of radiation on the blood brain barrier. Int J Radiat Oncol Biol Phys. 1986;12:1965–9.

    Article  CAS  Google Scholar 

  26. Fajardo LF, Berthrong M. Vascular lesions following radiation. Pathol Annu. 1988;23(Pt 1):297–330.

    PubMed  Google Scholar 

  27. Fike JR, Rosi S, Limoli CL. Neural precursor cells and central nervous system radiation sensitivity. Semin Radiat Oncol. 2009;19:122–32. https://doi.org/10.1016/j.semradonc.2008.12.003.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kudo S, Suzuki Y, Noda S-E, Mizui T, Shirai K, Okamoto M, et al. Comparison of the radiosensitivities of neurons and glial cells derived from the same rat brain. Exp Ther Med. 2014;8:754–8. https://doi.org/10.3892/etm.2014.1802.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nordal RA, Nagy A, Pintilie M, Wong CS. Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res. 2004;10:3342–53. https://doi.org/10.1158/1078-0432.CCR-03-0426.

    Article  CAS  PubMed  Google Scholar 

  30. Yoritsune E, Furuse M, Kuwabara H, Miyata T, Nonoguchi N, Kawabata S, et al. Inflammation as well as angiogenesis may participate in the pathophysiology of brain radiation necrosis. J Radiat Res. 2014;55:803–11. https://doi.org/10.1093/jrr/rru017.

    Article  CAS  Google Scholar 

  31. Yang R, Duan C, Yuan L, Engelbach JA, Tsien CI, Beeman SC, et al. Inhibitors of HIF-1α and CXCR4 mitigate the development of radiation necrosis in mouse brain. Int J Radiat Oncol. 2018;100:1016–25. https://doi.org/10.1016/j.ijrobp.2017.12.257.

    Article  CAS  Google Scholar 

  32. Woodworth GF, Garzon-Muvdi T, Ye X, Blakeley JO, Weingart JD, Burger PC. Histopathological correlates with survival in reoperated glioblastomas. J Neuro-Oncol. 2013;113:485–93. https://doi.org/10.1007/s11060-013-1141-3.

    Article  Google Scholar 

  33. Tihan T, Barletta J, Parney I, Lamborn K, Sneed PK, Chang S. Prognostic value of detecting recurrent glioblastoma multiforme in surgical specimens from patients after radiotherapy: should pathology evaluation alter treatment decisions? Hum Pathol. 2006;37:272–82. https://doi.org/10.1016/j.humpath.2005.11.010.

    Article  PubMed  Google Scholar 

  34. McGirt MJ, Bulsara KR, Cummings TJ, New KC, Little KM, Friedman HS, et al. Prognostic value of magnetic resonance imaging—guided stereotactic biopsy in the evaluation of recurrent malignant astrocytoma compared with a lesion due to radiation effect. J Neurosurg. 2003;98:14–20. https://doi.org/10.3171/jns.2003.98.1.0014.

    Article  PubMed  Google Scholar 

  35. Rusthoven KE, Olsen C, Franklin W, Kleinschmidt-DeMasters BK, Kavanagh BD, Gaspar LE, et al. Favorable prognosis in patients with high-grade glioma with radiation necrosis: the University of Colorado Reoperation Series. Int J Radiat Oncol. 2011;81:211–7. https://doi.org/10.1016/j.ijrobp.2010.04.069.

    Article  Google Scholar 

  36. Ali FS, Hussain MR, Gutiérrez C, Demireva P, Ballester LY, Zhu J-J, et al. Cognitive disability in adult patients with brain tumors. Cancer Treat Rev. 2018;65:33–40. https://doi.org/10.1016/J.CTRV.2018.02.007.

    Article  Google Scholar 

  37. Takenaka N, Imanishi T, Sasaki H, Shimazaki K, Sugiura H, Kitagawa Y, et al. Delayed radiation necrosis with extensive brain edema after gamma knife radiosurgery for multiple cerebral cavernous malformations-case report. Neurol Med Chir (Tokyo). 2003;43:391–5. https://doi.org/10.2176/nmc.43.391.

    Article  Google Scholar 

  38. Woo E, Chan Y-F, Lam K, Lok ASF, Yu Y-L, Huang C-Y. Apoplectic intracerebral hemorrhage: an unusual complication of cerebral radiation necrosis. Pathology. 1987;19:95–8. https://doi.org/10.3109/00313028709065146.

    Article  CAS  PubMed  Google Scholar 

  39. Ruben JD, Dally M, Bailey M, Smith R, McLean CA, Fedele P. Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys. 2006;65:499–508. https://doi.org/10.1016/j.ijrobp.2005.12.002.

    Article  PubMed  Google Scholar 

  40. Korytko T, Radivoyevitch T, Colussi V, Wessels BW, Pillai K, Maciunas RJ, et al. 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors. Int J Radiat Oncol. 2006;64:419–24. https://doi.org/10.1016/j.ijrobp.2005.07.980.

    Article  Google Scholar 

  41. Mayer R, Sminia P. Reirradiation tolerance of the human brain. Int J Radiat Oncol. 2008;70:1350–60. https://doi.org/10.1016/j.ijrobp.2007.08.015.

    Article  CAS  Google Scholar 

  42. Fogh SE, Andrews DW, Glass J, Curran W, Glass C, Champ C, et al. Hypofractionated stereotactic radiation therapy: an effective therapy for recurrent high-grade gliomas. J Clin Oncol. 2010;28:3048–53. https://doi.org/10.1200/JCO.2009.25.6941.

    Article  Google Scholar 

  43. Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;77:996–1001. https://doi.org/10.1016/j.ijrobp.2009.06.006.

    Article  PubMed  Google Scholar 

  44. Minniti G, Clarke E, Lanzetta G, Osti M, Trasimeni G, Bozzao A, et al. Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol. 2011;6:48. https://doi.org/10.1186/1748-717X-6-48.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Marks JE, Baglan RJ, Prassad SC, Blank WF. Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys. 1981;7:243–52.

    Article  CAS  Google Scholar 

  46. Dohm A, McTyre ER, Okoukoni C, Henson A, Cramer CK, LeCompte MC, et al. Staged stereotactic radiosurgery for large brain metastases: local control and clinical outcomes of a one-two punch technique. Neurosurgery. 2018;83:114–21. https://doi.org/10.1093/neuros/nyx355.

    Article  PubMed  Google Scholar 

  47. Patel KR, Chowdhary M, Switchenko JM, Kudchadkar R, Lawson DH, Cassidy RJ, et al. BRAF inhibitor and stereotactic radiosurgery is associated with an increased risk of radiation necrosis. Melanoma Res. 2016;26:387–94. https://doi.org/10.1097/CMR.0000000000000268.

    Article  CAS  Google Scholar 

  48. Diao K, Bian SX, Routman DM, Yu C, Ye JC, Wagle NA, et al. Stereotactic radiosurgery and ipilimumab for patients with melanoma brain metastases: clinical outcomes and toxicity. J Neuro-Oncol. 2018;139:421–9. https://doi.org/10.1007/s11060-018-2880-y.

    Article  CAS  Google Scholar 

  49. Colaco RJ, Martin P, Kluger HM, Yu JB, Chiang VL. Does immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases? J Neurosurg. 2016;125:17–23. https://doi.org/10.3171/2015.6.JNS142763.

    Article  CAS  PubMed  Google Scholar 

  50. • Miller JA, Bennett EE, Xiao R, Kotecha R, Chao ST, Vogelbaum MA, et al. Association between radiation necrosis and tumor biology after stereotactic radiosurgery for brain metastasis. Int J Radiat Oncol. 2016;96:1060–9. https://doi.org/10.1016/j.ijrobp.2016.08.039. Highlights the impact of tumor biology on the development of radiation necrosis.

    Article  Google Scholar 

  51. Li H, Li J, Cheng G, Zhang J, Li X. IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin Neurol Neurosurg. 2016;151:31–6. https://doi.org/10.1016/j.clineuro.2016.10.004.

    Article  PubMed  Google Scholar 

  52. Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant Radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26:2192–7. https://doi.org/10.1200/JCO.2007.14.8163.

    Article  Google Scholar 

  53. Roberts SA, Spreadborough AR, Bulman B, Barber JBP, Evans DGR, Scott D. Heritability of cellular radiosensitivity: a marker of low-penetrance predisposition genes in breast cancer? Am J Hum Genet. 1999;65:784–94. https://doi.org/10.1086/302544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gatti RA. The inherited basis of human radiosensitivity. Acta Oncol. 2001;40:702–11.

    Article  CAS  Google Scholar 

  55. Alter BP. Radiosensitivity in Fanconi’s anemia patients. Radiother Oncol. 2002;62:345–7.

    Article  Google Scholar 

  56. Taylor AMR, Harnden DG, Arlett CF, Harcourt SA, Lehmann AR, Stevens S, et al. Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature. 1975;258:427–9. https://doi.org/10.1038/258427a0.

    Article  CAS  PubMed  Google Scholar 

  57. • Wang T-M, Shen G-P, Chen M-Y, Zhang J-B, Sun Y, He J, et al. Genome-wide association study of susceptibility loci for radiation-induced brain injury. J Natl Cancer Inst. 2018. https://doi.org/10.1093/jnci/djy150. First study to identify an SNP that impacts radiosensitivity and may increase the risk of radiation necrosis.

    Article  Google Scholar 

  58. Siu A, Wind JJ, Iorgulescu JB, Chan TA, Yamada Y, Sherman JH. Radiation necrosis following treatment of high grade glioma—a review of the literature and current understanding. Acta Neurochir. 2012;154:191–201. https://doi.org/10.1007/s00701-011-1228-6.

    Article  PubMed  Google Scholar 

  59. GDC-0449 in Treating patients with recurrent glioblastoma multiforme that can be removed by surgery - Tabular View - ClinicalTrials.gov. n.d.

  60. Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro-Oncology. 2013;15:515–34. https://doi.org/10.1093/neuonc/nos307.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhuang H, Zheng Y, Wang J, Chang JY, Wang X, Yuan Z, et al. Analysis of risk and predictors of brain radiation necrosis after radiosurgery. Oncotarget. 2016;7:7773. https://doi.org/10.18632/ONCOTARGET.6532.

    Article  PubMed  Google Scholar 

  62. Dequesada IM, Quisling RG, Yachnis A, Friedman WA. Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radiation necrosis after radiosurgery for brain metastases? A radiographic-pathological study. Neurosurgery. 2008;63:898–904. https://doi.org/10.1227/01.NEU.0000333263.31870.31.

    Article  PubMed  Google Scholar 

  63. Sundgren PC, Fan X, Weybright P, Welsh RC, Carlos RC, Petrou M, et al. Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. Magn Reson Imaging. 2006;24:1131–42. https://doi.org/10.1016/j.mri.2006.07.008.

    Article  CAS  Google Scholar 

  64. Sinha S, Bastin ME, Whittle IR, Wardlaw JM. Diffusion tensor MR imaging of high-grade cerebral gliomas. AJNR Am J Neuroradiol. 2002;23:520–7.

    PubMed  Google Scholar 

  65. Rock JP, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rosenblum M, et al. Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis. Neurosurgery. 2004;54:1111–7 discussion 1117-9.

    Article  Google Scholar 

  66. Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol. 2004;25:201–9.

    PubMed  Google Scholar 

  67. Nazem-Zadeh M-R, Chapman CH, Chenevert T, Lawrence TS, Ten Haken RK, Tsien CI, et al. Response-driven imaging biomarkers for predicting radiation necrosis of the brain. Phys Med Biol. 2014;59:2535–47. https://doi.org/10.1088/0031-9155/59/10/2535.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mitsuya K, Nakasu Y, Horiguchi S, Harada H, Nishimura T, Bando E, et al. Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neuro-Oncol. 2010;99:81–8. https://doi.org/10.1007/s11060-009-0106-z.

    Article  Google Scholar 

  69. Kim YH, Oh SW, Lim YJ, Park C-K, Lee S-H, Kang KW, et al. Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg. 2010;112:758–65. https://doi.org/10.1016/j.clineuro.2010.06.005.

    Article  Google Scholar 

  70. Birken DL, Oldendorf WH. N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev. 1989;13:23–31.

    Article  CAS  Google Scholar 

  71. Degaonkar MN, Pomper MG, Barker PB. Quantitative proton magnetic resonance spectroscopic imaging: regional variations in the corpus callosum and cortical gray matter. J Magn Reson Imaging. 2005;22:175–9. https://doi.org/10.1002/jmri.20353.

    Article  PubMed  Google Scholar 

  72. Chan YL, Yeung DK, Leung SF, Cao G. Proton magnetic resonance spectroscopy of late delayed radiation-induced injury of the brain. J Magn Reson Imaging. 1999;10:130–7.

    Article  CAS  Google Scholar 

  73. Parvez K, Parvez A, Zadeh G. The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence. Int J Mol Sci. 2014;15:11832–46. https://doi.org/10.3390/ijms150711832.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Blanchet L, Krooshof PWT, Postma GJ, Idema AJ, Goraj B, Heerschap A, et al. Discrimination between metastasis and glioblastoma multiforme based on morphometric analysis of MR images. Am J Neuroradiol. 2011;32:67–73. https://doi.org/10.3174/ajnr.A2269.

    Article  Google Scholar 

  75. Manjila S, Knudson KE, Johnson C, Sloan AE. Monteris AXiiiS stereotactic miniframe for intracranial biopsy. Neurosurgery. 2015;12:1. https://doi.org/10.1227/NEU.0000000000001124.

    Article  Google Scholar 

  76. • Koch CJ, Lustig RA, Yang X-Y, Jenkins WT, Wolf RL, Martinez-Lage M, et al. Microvesicles as a biomarker for tumor progression versus treatment effect in radiation/temozolomide-treated glioblastoma patients. Transl Oncol. 2014;7:752–8. https://doi.org/10.1016/j.tranon.2014.10.004. Preliminary study on the utility of liquid biopsy in diagnosing radiation necrosis.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Soler DC, Young AB, Cooper KD, Kerstetter-Fogle A, Barnholtz-Sloan JS, Gittleman H, et al. The ratio of HLA-DR and VNN2+ expression on CD14+ myeloid derived suppressor cells can distinguish glioblastoma from radiation necrosis patients. J Neuro-Oncol. 2017;134:189–96. https://doi.org/10.1007/s11060-017-2508-7.

    Article  CAS  Google Scholar 

  78. Ballester LY, Lu G, Zorofchian S, Vantaku V, Putluri V, Yan Y, et al. Analysis of cerebrospinal fluid metabolites in patients with primary or metastatic central nervous system tumors. Acta Neuropathol Commun. 2018;6:85. https://doi.org/10.1186/s40478-018-0588-z.

  79. Zorofchian S, Iqbal F, Rao M, Aung PP, Esquenazi Y, Ballester LY. Circulating tumour DNA, microRNA and metabolites in cerebrospinal fluid as biomarkers for central nervous system malignancies. J Clin Pathol. 2019;72:271–80. https://doi.org/10.1136/jclinpath-2018-205414.

    Article  PubMed  Google Scholar 

  80. Zorofchian S, Lu G, Zhu J-J, Duose DY, Windham J, Esquenazi Y, et al. Detection of the MYD88 p.L265P mutation in the CSF of a patient with secondary central nervous system lymphoma. Front Oncol. 2018;8:382. https://doi.org/10.3389/fonc.2018.00382.

  81. Miller AM, Shah RH, Pentsova EI, Pourmaleki M, Briggs S, Distefano N, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019;565:654–8. https://doi.org/10.1038/s41586-019-0882-3.

    Article  CAS  Google Scholar 

  82. Sneed PK, Mendez J, Vemer-van den Hoek JGM, Seymour ZA, Ma L, Molinaro AM, et al. Adverse radiation effect after stereotactic radiosurgery for brain metastases: incidence, time course, and risk factors. J Neurosurg. 2015;123:373–86. https://doi.org/10.3171/2014.10.JNS141610.

    Article  CAS  PubMed  Google Scholar 

  83. Han J, Thompson P, Beutler B. Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/tumor necrosis factor synthesis at separate points in the signaling pathway. J Exp Med. 1990;172:391–4.

    Article  CAS  Google Scholar 

  84. Hong JH, Chiang CS, Sun JR, Withers HR, McBride WH. Induction of c-fos and junB mRNA following in vivo brain irradiation. Brain Res Mol Brain Res. 1997;48:223–8.

    Article  CAS  Google Scholar 

  85. Wang XS, Ying HM, He XY, Zhou ZR, Wu YR, Hu CS. Treatment of cerebral radiation necrosis with nerve growth factor: a prospective, randomized, controlled phase II study. Radiother Oncol. 2016;120:69–75. https://doi.org/10.1016/j.radonc.2016.04.027.

    Article  CAS  PubMed  Google Scholar 

  86. Glantz MJ, Burger PC, Friedman AH, Radtke RA, Massey EW, Schold SC. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology. 1994;44:2020–7.

    Article  CAS  Google Scholar 

  87. Williamson R, Kondziolka D, Kanaan H, Lunsford LD, Flickinger JC. Adverse radiation effects after radiosurgery may benefit from oral vitamin E and pentoxifylline therapy: a pilot study. Stereotact Funct Neurosurg. 2008;86:359–66. https://doi.org/10.1159/000163557.

    Article  PubMed  Google Scholar 

  88. George C, Hart B, Robert C, Thompson E. The treatment of cerebral ischemia with hyperbaric oxygen (OHP) the treatment of cerebral ischemia with hyperbaric oxygen (OHP). Stroke.1971;2:247–50. https://doi.org/10.1161/01.STR.2.3.247.

    Article  CAS  Google Scholar 

  89. Woo E, Lam K, Yu YL, Lee WH, Huang CY. Cerebral radionecrosis: is surgery necessary? J Neurol Neurosurg Psychiatry. 1987;50:1407–14. https://doi.org/10.1136/jnnp.50.11.1407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sharma M, Balasubramanian S, Silva D, Barnett GH, Mohammadi AM. Laser interstitial thermal therapy in the management of brain metastasis and radiation necrosis after radiosurgery: an overview. Expert Rev Neurother. 2016;16:223–32. https://doi.org/10.1586/14737175.2016.1135736.

    Article  CAS  PubMed  Google Scholar 

  91. Rahmathulla G, Recinos PF, Valerio JE, Chao S, Barnett GH. Laser interstitial thermal therapy for focal cerebral radiation necrosis: a case report and literature review. Stereotact Funct Neurosurg. 2012;90:192–200. https://doi.org/10.1159/000338251.

    Article  PubMed  Google Scholar 

  92. Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol. 2011;79:1487–95. https://doi.org/10.1016/j.ijrobp.2009.12.061.

    Article  CAS  Google Scholar 

  93. Delishaj D, Ursino S, Pasqualetti F, Cristaudo A, Cosottini M, Fabrini MG, et al. Bevacizumab for the treatment of radiation-induced cerebral necrosis: a systematic review of the literature. J Clin Med Res. 2017;9:273–80. https://doi.org/10.14740/jocmr2936e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Low-dose intra-arterial bevacizumab for edema and radiation necrosis therapeutic intervention (LIBERTI) - Full Text View - ClinicalTrials.gov. n.d.

  95. Ozturk B, Egehan I, Atavci S, Kitapci M. Pentoxifylline in prevention of radiation-induced lung toxicity in patients with breast and lung cancer: a double-blind randomized trial. Int J Radiat Oncol Biol Phys. 2004;58:213–9.

    Article  CAS  Google Scholar 

  96. Dion MW, Hussey DH, Doornbos JF, Vigliotti AP, Wen BC, Anderson B. Preliminary results of a pilot study of pentoxifylline in the treatment of late radiation soft tissue necrosis. Int J Radiat Oncol Biol Phys. 1990;19:401–7.

    Article  CAS  Google Scholar 

  97. Evaluation of the use of trental and vitamin E For prophylaxis of radiation necrosis - Tabular View - ClinicalTrials.gov. n.d.

  98. Ohguri T, Imada H, Kohshi K, Kakeda S, Ohnari N, Morioka T, et al. Effect of prophylactic hyperbaric oxygen treatment for radiation-induced brain injury after stereotactic radiosurgery of brain metastases. Int J Radiat Oncol. 2007;67:248–55. https://doi.org/10.1016/j.ijrobp.2006.08.009.

    Article  Google Scholar 

  99. Cihan YB, Uzun G, Yildiz S, Dönmez H. Hyperbaric oxygen therapy for radiation-induced brain necrosis in a patient with primary central nervous system lymphoma. J Surg Oncol. 2009;100:732–5. https://doi.org/10.1002/jso.21387.

    Article  PubMed  Google Scholar 

  100. Alyahya M, Mittal S, Rowe D, Machtay M, Ali SJ, Selman W, et al. RTHP-07. Treatment of brain radiation necrosis with hyperbaric oxygen: report of 6 cases. Neuro Oncol. 2017;19:vi220. https://doi.org/10.1093/neuonc/nox168.892.

    Article  PubMed Central  Google Scholar 

  101. Mou Y, Sai K, Wang Z, Zhang X, Lu Y, Wei D, et al. Surgical management of radiation-induced temporal lobe necrosis in patients with nasopharyngeal carcinoma: report of 14 cases. Head Neck. 2011;33:1493–500. https://doi.org/10.1002/hed.21639.

    Article  Google Scholar 

  102. Esquenazi Y, Kalamangalam GP, Slater JD, Knowlton RC, Friedman E, Morris S-A, et al. Stereotactic laser ablation of epileptogenic periventricular nodular heterotopia. Epilepsy Res. 2014;108:547–54. https://doi.org/10.1016/j.eplepsyres.2014.01.009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leomar Y. Ballester or Yoshua Esquenazi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-oncology

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, F.S., Arevalo, O., Zorofchian, S. et al. Cerebral Radiation Necrosis: Incidence, Pathogenesis, Diagnostic Challenges, and Future Opportunities. Curr Oncol Rep 21, 66 (2019). https://doi.org/10.1007/s11912-019-0818-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-019-0818-y

Keywords

Navigation