Skip to main content

Advertisement

Log in

Cardio-oncology: Gaps in Knowledge, Goals, Advances, and Educational Efforts

  • Cardio-oncology (EH Yang, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Over the past 20 years, cancer treatments have become more effective, leading to significant improvements in survival rates. However, anticancer drugs can have several possible cardiovascular side effects; in particular, the development of left ventricular dysfunction with chemoradiation therapy can negatively affect patients’ cardiac outcome, and can limit anticancer treatments. This is an ongoing issue that will continue to persist, due to the ongoing development of new antitumor agents with potential cardiotoxic effects, and the prolonged life expectancy of long-term cancer survivors. Thus, the need for cooperation between oncologists and cardiologists in the management of cancer patients has led to the development of a new medical discipline-cardio-oncology—where the issue of cardiotoxicity is a topic of intense interest and research. However, several issues remain—the proper definition and diagnosis of cardiotoxicity, as well as monitoring and treatment strategies. In this review, the current advances in cardio-oncology, limitations of current approaches, and future research fields will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. DeSantis C, Lin C, Mariotto A, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics. CA Cancer J Clin. 2014;64:252–71.

    Article  PubMed  Google Scholar 

  2. Cardinale D. A new frontier: cardioncology. Cardiologia. 1996;41:887–91.

    CAS  PubMed  Google Scholar 

  3. Plana JC, Galderisi M, Barac, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15:1063–93.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2768–01.

    Article  PubMed  Google Scholar 

  5. Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981–8.

    Article  CAS  PubMed  Google Scholar 

  6. Cardinale D, Biasillo G, Cipolla CM. Curing cancer, saving the heart: a challenge that cardioncology should not miss. Curr Cardiol Rep. 2016;18:51.

    Article  PubMed  Google Scholar 

  7. •• Christenson ES, James T, Agrawal V, Park BH. Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin Biochem. 2015;48:223–35. A complete review on strength and weakness points for the use of biomarkers in the detection of cardiotoxicity

    Article  CAS  PubMed  Google Scholar 

  8. Colombo A, Sandri MT, Salvatici M, Cipolla CM, Cardinale D. Cardiac complications of chemotherapy: role of biomarkers. Curr Treat Options Cardiovasc Med. 2014;16:313.

    Article  PubMed  Google Scholar 

  9. • Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D, et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin. 2016;66:309–25. A complete overview on incidence, detection, prevention, management, and clinical impact of cardiotoxicity

    Article  PubMed  Google Scholar 

  10. Lipshultz SE, Rifai N, Sallan SE, Lipsitz SR, Dalton V, Sacks DB, et al. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation. 1997;96:2641–8.

    Article  CAS  PubMed  Google Scholar 

  11. Cardinale D, Sandri MT, Martinoni A, Tricca A, Civelli M, Lamantia G, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36:517–22.

    Article  CAS  PubMed  Google Scholar 

  12. Cardinale D, Sandri MT, Martinoni A, Borghini E, Civelli M, Lamantia G, et al. Myocardial injury revealed by plasma troponin in breast cancer treated with high-dose chemotherapy. Ann Oncol. 2002;13:710–5.

    Article  CAS  PubMed  Google Scholar 

  13. Auner HW, Tinchon C, Brezinschek RI, Eibl M, Sormann S, Maizen C, et al. Monitoring of cardiac function by serum cardiac troponin T levels, ventricular repolarisation indices, and echocardiography after conditioning with fractionated total body irradiation and high-dose cyclophosphamide. Eur J Haematol. 2002;69:1–6.

    Article  CAS  PubMed  Google Scholar 

  14. Sandri MT, Cardinale D, Zorzino L, Passerini R, Lentati P, Martinoni A, et al. Minor increases in plasma troponin I predict decreased left ventricular ejection fraction after high-dose chemotherapy. Clin Chem. 2003;49:248–52.

    Article  CAS  PubMed  Google Scholar 

  15. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109:2749–54.

    Article  CAS  PubMed  Google Scholar 

  16. Specchia G, Buquicchio C, Pansini N, Di Serio F, Liso V, Pastore D, et al. Monitoring of cardiac function on the basis of serum troponin levels in patients with acute leukemia treated with anthracyclines. J Lab Clin Med. 2005;145:212–20.

    Article  CAS  PubMed  Google Scholar 

  17. Kilickap S, Barista I, Akgul E, Aytemir K, Aksoyek S, Aksoy S, et al. cTnT can be a useful marker for early detection of anthracycline cardiotoxicity. Ann Oncol. 2005;16:798–804.

    Article  CAS  PubMed  Google Scholar 

  18. Lee HS, Son CB, Shin SH, Kim YS. Clinical correlation between brain natriuretic peptide and anthracycline-induced cardiac toxicity. Cancer Res Treat. 2008;40:121–6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cardinale D, Colombo A, Torrisi R, Sandri MT, Civelli M, Salvatici M, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28:3910–6.

    Article  CAS  PubMed  Google Scholar 

  20. Morris PG, Chen C, Steingart R, Fleisher M, Lin N, Moy B, et al. Troponin I and C-reactive protein are commonly detected in patients with breast cancer treated with dose-dense chemo-therapy incorporating trastuzumab and lapatinib. Clin Cancer Res. 2011;17:3490–9.

    Article  CAS  PubMed  Google Scholar 

  21. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107:1375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lipshultz SE, Miller TL, Scully RE, Lipsitz SR, Rifai N, Silverman LB, et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol. 2012;30:1042–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. • Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5:596–603. This study suggests that the combination of biomarker assessment and the newest echocardiographic techniques may have a greater value in the prediction of cardiotoxicity

    Article  PubMed  PubMed Central  Google Scholar 

  24. Geiger S, Stemmler HJ, Suhl P, Stieber P, Lange V, Baur D, et al. Anthracycline-induced cardiotoxicity: cardiac monitoring by continuous wave-Doppler ultrasound cardiac output monitoring and correlation to echocardiography. Onkologie. 2012;35:241–6.

    Article  CAS  PubMed  Google Scholar 

  25. Drafts BC, Twomley KM, D'Agostino R Jr, Lawrence J, Avis N, Ellis LR, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 2013;6:877–85.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mornoş C, Petrescu L. Early detection of anthracycline-mediated cardiotoxicity: the value of considering both global longitudinal left ventricular strain and twist. Can J Physiol Pharmacol. 2013;91:601–7.

    Article  PubMed  Google Scholar 

  27. Mavinkurve-Groothuis AM, Marcus KA, Pourier M, Loonen J, Feuth T, Hoogerbrugge PM, et al. Myocardial 2D strain echocardiography and cardiac biomarkers in children during and shortly after anthracycline therapy for acute lymphoblastic leukaemia (ALL): a prospective study. Eur Heart J Cardiovasc Imaging. 2013;14:562–9.

    Article  PubMed  Google Scholar 

  28. Ky B, Putt M, Sawaya H, French B, Januzzi JL, Sebag I, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014;63:809–16.

    Article  CAS  PubMed  Google Scholar 

  29. Putt M, Hahn VS, Januzzi JL, Sawaya H, Sebag IA, Plana JC, et al. Longitudinal changes in multiple biomarkers are associated with cardiotoxicity in breast cancer patients treated with doxorubicin, taxanes, and trastuzumab. Clin Chem. 2015;61:1164–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Salvatici M, Cardinale D, Botteri E, Bagnardi V, Mauro C, Cassatella MC, et al. TnI-Ultra assay measurements in cancer patients: comparison with the conventional assay and clinical implication. Scand J Clin Lab Invest. 2014;74:385–91.

    Article  PubMed  Google Scholar 

  31. Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, et al. ESMO Guidelines Working Group. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Ann Oncol 2012;23:vii155–vii166.

  32. Soker M, Kervancioglu M. Plasma concentrations of NT-pro-BNP and cardiac troponin-I in relation to doxorubicin-induced cardiomyopathy and cardiac function in childhood malignancy. Saudi Med J. 2005;26:1197–202.

    PubMed  Google Scholar 

  33. Sandri MT, Salvatici M, Cardinale D, Zorzino L, Passerini R, Lentati P, et al. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem. 2005;51:1405–10.

    Article  CAS  PubMed  Google Scholar 

  34. Knobloch K, Tepe J, Lichtinghagen R, Luck HJ, Vogt PM. Simultaneous hemodynamic and serological cardiotoxicity monitoring during immunotherapy with trastuzumab. Int J Cardiol. 2008;125:113–5.

    Article  CAS  PubMed  Google Scholar 

  35. Romano S, Fratini S, Ricevuto E, Procaccini V, Stifano G, Mancini M, et al. Serial measurements of NT-proBNP are predictive of not-high-dose anthracycline cardiotoxicity in breast cancer patients. Br J Cancer. 2011;105:1663–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dodos F, Halbsguth T, Erdmann E, Hoppe UC. Usefulness of myocardial performance index and biochemical markers for early detection of anthracycline-induced cardiotoxicity in adults. Clin Res Cardiol. 2008;97:318–26.

    Article  PubMed  Google Scholar 

  37. Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7:332–44.

    Article  CAS  PubMed  Google Scholar 

  38. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: systematic review. J Am Coll Cardiol. 2014;63:2751–68.

    Article  PubMed  Google Scholar 

  39. Vergaro G, Del Franco A, Giannoni A, Prontera C, Ripoli A, Barison A, et al. Galectin-3 and myocardial fibrosis in nonischemic dilated cardiomyopathy. Int J Cardiol. 2015;184:96–100.

    Article  PubMed  Google Scholar 

  40. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975.

    Article  PubMed  Google Scholar 

  41. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2013;62:e147–239.

    Article  PubMed  Google Scholar 

  42. Fazio S, Calmieri EA, Ferravate B, Bone F, Biondi B, Sacca L. Doxorubicin-induced cardiomyopathy treated with carvedilol. Clin Cardiol. 1998;21:777–9.

    Article  CAS  PubMed  Google Scholar 

  43. Noori A, Lindenfeld J, Wolfel E, Ferguson D, Bristow MR, Lowes BD. Beta-blockade in adriamycin-induced cardiomyopathy. J Card Fail. 2000;6:115–9.

    CAS  PubMed  Google Scholar 

  44. Mukai Y, Yoshida T, Nakaike R, Mukai N, Iwato K, Kyo T, et al. Five cases of anthracycline-induced cardiomyopathy effectively treated with carvedilol. Intern Med. 2004;43:1087–8.

    Article  PubMed  Google Scholar 

  45. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55:213–20.

    Article  CAS  PubMed  Google Scholar 

  46. Hopper I, Samuel R, Hayward C, Tonkin A, Krum H. Can medications be safely withdrawn in patients with stable chronic heart failure? Systematic review and meta-analysis. J Card Fail. 2014;20:522–32.

    Article  PubMed  Google Scholar 

  47. Shukla A, Yusuf SW, Lenihan D, Durand J. Abstract 2942: high mortality rates are associated with withdrawal of beta blockers and ace inhibitors in chemotherapy-induced heart failure. Circulation. 2008;118:S797.

    Article  Google Scholar 

  48. Fadol AP, Banchs J, Hassan SA, Yeh ET, Fellman B. Withdrawal of heart failure medications in cancer survivors with chemotherapy-induced left ventricular dysfunction: a pilot study. J Card Fail. 2016;22:481–2.

    Article  PubMed  Google Scholar 

  49. Slingerland M, Guchelaar HJ, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today. 2012;17:160–6.

    Article  CAS  PubMed  Google Scholar 

  50. FDA statement on Dexrazoxane. www.fda.gov/ Drugs/DrugSafety/ucm263729.htm.

  51. Tebbi CK, London WB, Friedman D, Villaluna D, De Alarcon PA, Constine LS, et al. Dexrazoxane-associated risk for acute myeloid leukemia myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol. 2007;25:493–500.

    Article  CAS  PubMed  Google Scholar 

  52. Seicean S, Seicean A, Alan N, Plana JC, Budd GT, Marwick TH. Cardioprotective effect of β-adrenoceptor blockade in patients with breast cancer undergoing chemotherapy: follow-up study of heart failure. Circ Heart Fail. 2013;6:420–6.

    Article  CAS  PubMed  Google Scholar 

  53. Kaya MG, Ozkan M, Gunebakmaz O, Akkaya H, Kaya EG, Akpek M, et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol. 2013;167:2306–10.

    Article  PubMed  Google Scholar 

  54. Vaynblat M, Shah HR, Bhaskaran D, Ramdev G, Davis WJ 3rd, Cunningham JN Jr, et al. Simultaneous angiotensin-converting enzyme inhibition moderates ventricular dysfunction caused by doxorubicin. Eur J Heart Fail. 2002;4:583–6.

    Article  CAS  PubMed  Google Scholar 

  55. Nakamae H, Tsumura K, Terada Y, Nakane T, Nakamae M, Ohta K, et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104:2492–8.

    Article  CAS  PubMed  Google Scholar 

  56. Cadeddu C, Piras A, Mantovani G, Deidda M, Dessì M, Madeddu C, et al. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J. 2010;160:487.e1–7.

    Article  Google Scholar 

  57. Akpek M, Ozdogru I, Sahin O, Inanc M, Dogan A, Yazici C, et al. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail. 2015;17:81–9.

    Article  CAS  PubMed  Google Scholar 

  58. Acar Z, Kale A, Turgut M, Demircan S, Durna K, Demir S, et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2011;58:988–9.

    Article  PubMed  Google Scholar 

  59. Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol. 2012;60:2384–90.

    Article  CAS  PubMed  Google Scholar 

  60. Chotenimitkhun R, D’Agostino R Jr, Lawrence JA, Hamilton CA, Jordan JH, Vasu S, et al. Chronic statin administration may attenuate early anthracycline-associated declines in left ventricular ejection function. Can J Cardiol. 2015;31:302e–7a.

    Article  Google Scholar 

  61. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114:2474–81.

    Article  CAS  PubMed  Google Scholar 

  62. Ederhy S, Massard C, Dufaitre G, Balheda R, Meuleman C, Rocca CG, et al. Frequency and management of troponin I elevation in patients treated with molecular targeted therapies in phase 1 trials. Investig New Drugs. 2010;30:611–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gina Biasillo.

Ethics declarations

Conflict of Interest

Gina Biasillo, Carlo M. Cipolla, and Daniela Cardinale declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biasillo, G., Cipolla, C.M. & Cardinale, D. Cardio-oncology: Gaps in Knowledge, Goals, Advances, and Educational Efforts. Curr Oncol Rep 19, 55 (2017). https://doi.org/10.1007/s11912-017-0610-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-017-0610-9

Keywords

Navigation