Skip to main content

Advertisement

Log in

Cardiac Complications of Chemotherapy: Role of Biomarkers

  • Cardio-oncology (S Francis, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Both conventional and novel antineoplastic drugs may cause damage to the heart, ultimately affecting patients’ survival and quality of life. In fact, the most frequent and typical clinical manifestation of cardiotoxicity, asymptomatic or symptomatic left ventricular dysfunction, may be induced not only by conventional cancer therapy, like anthracyclines, but also by new antitumoral targeted therapy such as trastuzumab. At present, left ventricular ejection fraction assessment represents the main standard practice for cardiac monitoring during cancer therapy, but it detects myocardial damage only when a functional impairment has already occurred, not allowing for early preventive strategies. In the last decade, a newer approach based on the measurement of cardiospecific biomarkers has been proposed, proving to have higher prognostic value than imaging modalities. In particular, cardiac troponin elevation during chemotherapy allows us to identify patients who are more prone to develop myocardial dysfunction and cardiac events during follow up. In these patients, the use of an angiotensin-converting enzyme inhibitor, such as enalapril, has shown to be effective in improving clinical outcome, giving the chance for a cardioprotective strategy in a selected population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

CT:

chemotherapy

LVEF:

left ventricular ejection fraction

MUGA:

radionuclide multi-gated acquisition

NP:

natriuretic peptides

cTnI:

cardiac troponin I

cTnT:

cardiac troponin T

HF:

heart failure

AC:

anthracycline

LVD:

left ventricular dysfunction

HS:

highly sensitive

NT-proBNP:

N-terminal pro-brain natriuretic peptide

CMP:

cardiomyopathy

ACEI:

angiotensin-converting enzyme inhibitor

BB:

beta-blocker

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hunt SA, Abraham WT, Chin MH, et al. Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53:e1–e90.

    Article  PubMed  Google Scholar 

  2. Eschenhagen T, Force T, Ewer MS, et al. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2011;13(1):1–10.

    Article  PubMed  Google Scholar 

  3. Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol. 2002;13(5):699–709.

    Article  CAS  PubMed  Google Scholar 

  4. Bird BR, Swain SM. Cardiac toxicity in breast cancer survivors: review of potential cardiac problems. Clin Cancer Res. 2008;14(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  5. Altena R, Perik PJ, van Veldhuisen DJ, et al. Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet Oncol. 2009;10:391–9.

    Article  CAS  PubMed  Google Scholar 

  6. The Joint European Society of Cardiology/American College of Cardiology Committee. Myocardial infarction redefined: a consensus document of the Joint European Society of Cardiology/American College of Cardiology for the redefinition of myocardial infarction. Eur Heart J. 2000;21(18):1502–13.

    Article  Google Scholar 

  7. Newby LK, Jesse RL, Babb JD, et al. ACCF 2012 expert consensus document on practical clinical considerations in the interpretation of troponin elevations: a report of the American College of Cardiology Foundation task force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2012;60(23):2427–63.

    Article  PubMed  Google Scholar 

  8. O'Brien PJ. Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity. Toxicology. 2008;245(3):206–18.

    Article  PubMed  Google Scholar 

  9. Lipshultz SE, Rifai N, Sallan SE, et al. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation. 1997;96(8):2641–8.

    Article  CAS  PubMed  Google Scholar 

  10. Lipshultz SE, Scully RE, Lipsitz SR, et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol. 2010;11(10):950–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lipshultz SE, Miller TL, Scully RE, et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol. 2012;30(10):1042–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cardinale D, Sandri MT, Martinoni A, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36(2):517–22.

    Article  CAS  PubMed  Google Scholar 

  13. Morandi P, Ruffini PA, Benvenuto GM, et al. Serum cardiac troponin I levels and ECG/Echo monitoring in breast cancer patients undergoing high-dose (7 g/m2) cyclophosphamide. Bone Marrow Transplant. 2001;28(3):277–82.

    Article  CAS  PubMed  Google Scholar 

  14. Cardinale D, Sandri MT, Martinoni A, et al. Myocardial injury revealed by plasma troponina I in breast cancer treated with high-dose chemotherapy. Ann Oncol. 2002;13(5):710–5.

    Article  CAS  PubMed  Google Scholar 

  15. Auner HW, Tinchon C, Brezinschek RI, et al. Monitoring of cardiac function by serum cardiac troponin T levels, ventricular repolarisation indices, and echocardiography after conditioning with fractionated total body irradiation and high-dose cyclophosphamide. Eur J Haematol. 2002;69(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  16. Sandri MT, Cardinale D, Zorzino L, et al. Minor increases in plasma troponin I predict decreased left ventricular ejection fraction after high-dose chemotherapy. Clin Chem. 2003;49(2):248–52.

    Article  CAS  PubMed  Google Scholar 

  17. Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54.

    Article  CAS  PubMed  Google Scholar 

  18. Specchia G, Buquicchio C, Pansini N, et al. Monitoring of cardiac function on the basis of serum troponin I levels in patients with acute leukemia treated with anthracyclines. J Lab Clin Med. 2005;145(4):212–20.

    Article  CAS  PubMed  Google Scholar 

  19. Kilickap S, Barista I, Akgul E, et al. cTnT can be a useful marker for early detection of anthracycline cardiotoxicity. Ann Oncol. 2005;16(5):798–804.

    Article  CAS  PubMed  Google Scholar 

  20. Dodos F, Halbsguth T, Erdmann E, et al. Usefulness of myocardial performance index and biochemical markers for early detection of anthracycline-induced cardiotoxicity in adults. Clin Res Cardiol. 2008;97(5):318–26.

    Article  PubMed  Google Scholar 

  21. Cardinale D, Colombo A, Torrisi R, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28(25):3910–6.

    Article  CAS  PubMed  Google Scholar 

  22. Schmidinger M, Zielinski CC, Vogl UM, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26(32):5204–12.

    Article  PubMed  Google Scholar 

  23. Morris PG, Chen C, Steingart R, et al. Troponin I and C-reactive protein are commonly detected in patients with breast cancer treated with dose-dense chemotherapy incorporating trastuzumab and lapatinib. Clin Cancer Res. 2011;17(10):3490–9.

    Article  CAS  PubMed  Google Scholar 

  24. Sawaya H, Sebag IA, Plana JC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5(5):596–603. This study suggests the possibility that combining biomarkers with the newest echocardiographic techniques may have a greater value in the prediction of cardiotoxicity.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ewer MS, Ewer SM. Troponin I provides insight into cardiotoxicity and the anthracycline-trastuzumab interaction. J Clin Oncol. 2010;28(25):3901–4.

    Article  CAS  PubMed  Google Scholar 

  26. Adamcová M, Simunek T, Kaiserová H, et al. In vitro and in vivo examination of cardiac troponins as biochemical markers of drug induced cardiotoxicity. Toxicology. 2007;237(1–3):218–28.

    Article  PubMed  Google Scholar 

  27. Cardinale D, Sandri MT. Role of biomarkers in chemotherapy-induced cardiotoxicity. Prog Cardiovasc Dis. 2010;53(2):121–9.

    Article  CAS  PubMed  Google Scholar 

  28. Lenihan DJ, Oliva S, Chow EJ, Cardinale D. Cardiac toxicity in cancer survivors. Cancer. 2013;119 Suppl 11:2131–42. Overview of current perspectives about identification, treatment, or prevention of cardiac complications resulting from cancer therapy.

    Article  PubMed  Google Scholar 

  29. Dolci A, Dominici R, Cardinale D, et al. Biochemical markers for prediction of chemotherapy-induced cardiotoxicity: systematic review of the literature and recommendations for use. Am J Clin Pathol. 2008;130(5):688–95.

    Article  CAS  PubMed  Google Scholar 

  30. Gerszten RE, Asnani A, Carr SA. Status and prospects for discovery and verification of new biomarkers of cardiovascular disease by proteomics. Circ Res. 2011;109:463–74. An overview of emerging techniques aimed at the discovery and validation of new cardiovascular biomarkers.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kimura K, Yamaguchi Y, Horii M, Kawata H, Yamamoto H, Uemura S, et al. ANP is cleared much faster than BNP in patients with congestive heart failure. Eur J Clin Pharmacol. 2007;63(7):699–702.

    Article  CAS  PubMed  Google Scholar 

  32. Chowdhury P, Kehl D, Choudhary R, Maisel A. The use of biomarkers in the patient with heart failure. Curr Cardiol Rep. 2013;15(6):372.

    Article  PubMed  Google Scholar 

  33. Suzuki T, Hayashi D, Yamazaki T, et al. Elevated B-type natriuretic peptide levels after anthracycline administration. Am Heart J. 1998;136(2):362–3.

    Article  CAS  PubMed  Google Scholar 

  34. Horacek JM, Pudil R, Jebavy L, et al. Assessment of anthracycline-induced cardiotoxicity with biochemical markers. Exp Oncol. 2007;29(4):309–13.

    CAS  PubMed  Google Scholar 

  35. Nousiainen T, Jantunen E, Vanninen E, et al. Acute neurohumoral and cardiovascular effects of idarubicin in leukemia patients. Eur J Haematol. 1998;61(5):347–53.

    Article  CAS  PubMed  Google Scholar 

  36. Hayakawa H, Komada Y, Hirayama M, et al. Plasma levels of natriuretic peptides in relation to doxorubicin-induced cardiotoxicity and cardiac function in children with cancer. Med Pediatr Oncol. 2001;37(1):4–9.

    Article  CAS  PubMed  Google Scholar 

  37. Meinardi MT, Van Veldhuisen DJ, Gietema JA, et al. Prospective evaluation of early cardiac damage induced by epirubicin-containing adjuvant chemotherapy and locoregional radiotherapy in breast cancer patients. J Clin Oncol. 2001;19(10):2746–53.

    CAS  PubMed  Google Scholar 

  38. Nousiainen T, Vanninen E, Jantunen E, et al. Natriuretic peptides during the development of doxorubicin-induced left ventricular diastolic dysfunction. J Intern Med. 2002;251(3):228–34.

    Article  CAS  PubMed  Google Scholar 

  39. Daugaard G, Lassen U, Bie P, et al. Natriuretic peptides in the monitoring of anthracycline induced reduction in left ventricular ejection fraction. Eur J Heart Fail. 2005;7(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  40. Sandri MT, Salvatici M, Cardinale D, et al. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem. 2005;51(11):1405–10.

    Article  CAS  PubMed  Google Scholar 

  41. Pinarli FG, Oğuz A, Tunaoğlu FS. Late cardiac evaluation of children with solid tumors after anthracycline chemotherapy. Pediatr Blood Cancer. 2005;44(4):370–7.

    Article  PubMed  Google Scholar 

  42. Nakamae H, Tsumura K, Terada Y, et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104(11):2492–8.

    Article  CAS  PubMed  Google Scholar 

  43. Pichon MF, Cvitkovic F, Hacene K, et al. Drug-induced cardiotoxicity studied by longitudinal B-type natriuretic peptide assays and radionuclide ventriculography. In Vivo. 2005;19(3):567–76.

    CAS  PubMed  Google Scholar 

  44. Soker M, Kervancioglu M. Plasma concentrations of NT-pro-BNP and cardiac troponin-I in relation to doxorubicin-induced cardiomyopathy and cardiac function in childhood malignancy. Saudi Med J. 2005;26(8):1197–202.

    PubMed  Google Scholar 

  45. Erkus B, Demirtas S, Yarpuzlu AA, et al. Early prediction of anthracycline induced cardiotoxicity. Acta Paediatr. 2007;96(4):506–9.

    Article  PubMed  Google Scholar 

  46. Aggarwal S, Pettersen MD, Bhambhani K, et al. B-type natriuretic peptide as a marker for cardiac dysfunction in anthracycline-treated children. Pediatr Blood Cancer. 2007;49(6):812–6.

    Article  PubMed  Google Scholar 

  47. Ekstein S, Nir A, Rein AJ, et al. N-terminal-proB-type natriuretic peptide as a marker for acute anthracycline cardiotoxicity in children. J Pediatr Hematol Oncol. 2007;29(7):440–4.

    Article  CAS  PubMed  Google Scholar 

  48. Zver S, Zadnik V, Bunc M, et al. Cardiac toxicity of high-dose cyclophosphamide and melphalan in patients with multiple myeloma treated with tandem autologous hematopoietic stem cell transplantation. Int J Hematol. 2008;85(5):408–14.

    Article  Google Scholar 

  49. Knobloch K, Tepe J, Lichtinghagen R, et al. Simultaneous hemodynamic and serological cardiotoxicity monitoring during immunotherapy with trastuzumab. Int J Cardiol. 2008;125(1):113–5.

    Article  CAS  PubMed  Google Scholar 

  50. Broeyer FJ, Osanto S, Ritsema van Eck HJ, et al. Evaluation of biomarkers for cardiotoxicity of anthracycline-based chemotherapy. J Cancer Res Clin Oncol. 2008;134(9):961–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Mavinkurve-Groothuis AM, Groot-Loonen J, Bellersen L, et al. Abnormal NT-pro-BNP levels in asymptomatic long-term survivors of childhood cancer treated with anthracyclines. Pediatr Blood Cancer. 2009;52(5):631–6.

    Article  PubMed  Google Scholar 

  52. Cil T, Kaplan AM, Altintas A, et al. Use of N-terminal pro-brain natriuretic peptide to assess left ventricular function after adjuvant doxorubicin therapy in early breast cancer patients: a prospective series. Clin Drug Investig. 2009;29(2):131–7.

    Article  CAS  PubMed  Google Scholar 

  53. Roziakova L, Bojtarova E, Mistrik M, et al. Serial measurements of cardiac biomarkers in patients after allogeneic hematopoietic stem cell transplantation. J Exp Clin Cancer Res. 2012;31:13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Romano S, Fratini S, Ricevuto E, et al. Serial measurements of NT-proBNP are predictive of not-high-dose anthracycline cardiotoxicity in breast cancer patients. Br J Cancer. 2011;105(11):1663–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Lee HS, Son CB, Shin SH, et al. Clinical correlation between brain natriutetic peptide and anthracyclin-induced cardiac toxicity. Cancer Res Treat. 2008;40(3):121–6.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Feola M, Garrone O, Occelli M, et al. Cardiotoxicity after anthracycline chemotherapy in breast carcinoma: effects on left ventricular ejection fraction, troponin I and brain natriuretic peptide. Int J Cardiol. 2011;148(2):194–8.

    Article  PubMed  Google Scholar 

  57. Wouters KA, Kremer LC, Miller TL, et al. Protecting against anthracyclines-induced myocardial damage: a review of the most promising strategies. Br J Haematol. 2005;131:561–78.

    Article  CAS  PubMed  Google Scholar 

  58. Cardinale D, Colombo A, Sandri MT, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81.

    Article  CAS  PubMed  Google Scholar 

  59. Geisberg CA, Sawyer DB. Mechanisms of anthracycline cardiotoxicity and strategies to decrease cardiac damage. Curr Hypertens Rep. 2010;12:404–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Lipshultz SE, Rifai N, Dalton VM, et al. The effect of dexrazoxane on myocardial injury in doxorubicin treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  61. van Dalen EC, Caron HN, Dickinson HO, et al. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2011;(6):15--17.

  62. Huh WW, Jaffe N, Durand JB, et al. Comparison of doxorubicin cardiotoxicity in pediatric sarcoma patients when given with dexrazoxane versus as continuous infusion. Pediatr Hematol Oncol. 2010;27(7):546–57.

    Article  CAS  PubMed  Google Scholar 

  63. FDA statement on Dexrazoxane. www.fda.gov/Drugs/DrugSafety/ucm263729.htm. Last Accessed 3 Sep 2013.

  64. Tebbi CK, London WB, Friedman D, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol. 2007;25(5):493–500.

    Article  CAS  PubMed  Google Scholar 

  65. Barry EV, Vrooman LM, Dahlberg SE, et al. Absence of secondary malignant neoplasms in children with high-risk acute lymphoblastic leukemia treated with dexrazoxane. J Clin Oncol. 2008;26(7):1106–11.

    Article  CAS  PubMed  Google Scholar 

  66. Spallarossa P, Garibaldi S, Altieri P, et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. 2004;37(4):837–46.

    Article  CAS  PubMed  Google Scholar 

  67. Kalay N, Basar E, Ozdogru I, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62.

    Article  CAS  PubMed  Google Scholar 

  68. Kaya MG, Ozkan M, Gunebakmaz O, et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol. 2013;167(5):2306--10.

  69. Bosch X, Esteve J, Sitges M, et al. Prevention of chemotherapy-induced left ventricular dysfunction with enalapril and carvedilol: rationale and design of the OVERCOME trial. J Card Fail. 2011;17:643–8.

    Article  PubMed  Google Scholar 

  70. Barry E, Alvarez JA, Scully RE, et al. Anthracycline induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin Pharmacother. 2007;8(8):1039–58.

    Article  CAS  PubMed  Google Scholar 

  71. Albini A, Pennesi G, Donatelli F, et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Cadeddu C, Piras A, Mantovani G, et al. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J. 2010;160(3):487.e1–7.

    Article  Google Scholar 

  73. Dessì M, Madeddu C, Piras A, et al. Long-term, up to 18 months, protective effects of the angiotensin II receptor blocker telmisartan on Epirubin-induced inflammation and oxidative stress assessed by serial strain rate. Springerplus. 2013;2(1):198.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Ederhy S, Massard C, Dufaitre G, et al. Frequency and management of troponin I elevation in patients treated with molecular targeted therapies in Phase 1 trials. Investig New Drugs. 2010;30(2):611–5.

    Article  Google Scholar 

  75. Curigliano G, Cardinale D, Suter T, ESMO Guidelines Working Group, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23(7):vii155–66.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Alessandro Colombo, Dr. Maria T. Sandri, Dr. Michela Salvatici, Dr. Carlo M. Cipolla, and Dr. Daniela Cardinale each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Colombo MD.

Additional information

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, A., Sandri, M.T., Salvatici, M. et al. Cardiac Complications of Chemotherapy: Role of Biomarkers. Curr Treat Options Cardio Med 16, 313 (2014). https://doi.org/10.1007/s11936-014-0313-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-014-0313-6

Keywords

Navigation