Skip to main content

Advertisement

Log in

Curing Cancer, Saving the Heart: A Challenge That Cardioncology Should Not Miss

  • Cardio-Oncology (SA Francis, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Advances in oncologic therapies have led to considerable improvements in prognosis and survival. However, these improvements may ultimately be diminished by the increase of cardiovascular side effects. Typically, both conventional and new antitumoral therapies may induce asymptomatic or symptomatic left ventricular dysfunction. Its development still remains a major deterrent that may compromise clinical effectiveness of cancer treatment, independently of the oncologic prognosis, having a serious impact on the patient’s survival and quality of life. Hence, prevention of cardiotoxicity remains a crucial topic both for cardiologists and oncologists. Many strategies to mitigate the risk of cardiotoxicity have been developed, including cardiac function monitoring, limitation of chemotherapy doses, use of anthracycline analogues and cardioprotectants, and early detection of cardiotoxicity by biomarkers, followed by prophylactic intervention in selected high risk patients. We reviewed the currently available approaches which have been demonstrated to be effective in preventing or limiting cancer drug-induced cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. DeSantis C, Lin C, Mariotto A, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64:252–71.

    Article  PubMed  Google Scholar 

  2. Truong J, Yan AT, Cramarossa G, Chan KKW. Chemotherapy-induced cardiotoxicity: detection, prevention and management. Can J Cardiol. 2014;30:869–78. A complete overview on incidence, detection, prevention, management, and clinical importance of cardiotoxicity.

    Article  PubMed  Google Scholar 

  3. Lenihan D, Cardinale D. Late cardiac effects of cancer treatment. J Clin Oncol. 2012;30:3657–64.

    Article  PubMed  Google Scholar 

  4. Carver JRSC, Ng A, et al. American society of clinical oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol. 2007;25:3991–4008.

    Article  CAS  PubMed  Google Scholar 

  5. Yeh ETH, Bickford CL. Cardiovascular complications of cancer therapy. Incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53:2231–47.

    Article  CAS  PubMed  Google Scholar 

  6. Hahn VS, Lenihan DJ, Ky B. Cancer therapy-induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies. J Am Heart Assoc. 2014;3, e000665. An excellent review focusing on basic and clinical data to support use of specific potential cardioprotective agents against cancer therapy-induced cardiotoxicity.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ewer SM, Ewer MS. Cardiotoxicity profile of trastuzumab. Drug Saf. 2008;31:459–67.

    Article  CAS  PubMed  Google Scholar 

  8. Tocchetti CG, Ragone G, Coppola C, Rea D, Piscopo G, Scala S. Detection, monitoring, and management of trastuzumab-induced left ventricular dysfunction: an actual challenge. Eur J Heart Fail. 2012;14:130–7.

    Article  CAS  PubMed  Google Scholar 

  9. Lotrionte M, Biondi-Zoccai G, Abbate A, et al. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol. 2013;112:1980–4.

    Article  CAS  PubMed  Google Scholar 

  10. Pinder MC, Duan Z, Goodwin JS, Hortobagyi GN, Giordano SH. Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol. 2007;25:3808–15.

    Article  CAS  PubMed  Google Scholar 

  11. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102:14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lenihan DJ, Esteva FJ. Multidisciplinary strategy for managing cardiovascular risks when treating patients with early breast cancer. Oncologist. 2008;13:1224–34.

    Article  CAS  PubMed  Google Scholar 

  13. Wouters KA, Kremer LCM, Miller TL, Herman EH, Lipshultz SE. Br J Haematol. 2005;131:561–78.

    Article  CAS  PubMed  Google Scholar 

  14. Curigliano G, Cardinale D, Suter T, et al. ESMO guidelines working group. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Ann Oncol. 2012;23:vii155–66. Available from: www.annonc.oxfordjournals.org .

    Article  PubMed  Google Scholar 

  15. Vejpongsa P, Yeh ET. Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol. 2014;64:938–45.

    Article  CAS  PubMed  Google Scholar 

  16. Slingerland M, Guchelaar HJ, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today. 2012;17:160–6.

    Article  CAS  PubMed  Google Scholar 

  17. Nitiss K, Nitiss J. Twisting and ironing: doxorubicin cardiotoxicity by mitochondrial DNA damage. Clin Cancer Res. 2014;20:4737–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67:8839–46.

    Article  CAS  PubMed  Google Scholar 

  19. Van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2011;CD003917.

  20. FDA statement on Dexrazoxane. www.fda.gov/Drugs/DrugSafety/ucm263729.htm.

  21. Kalay N, Basar E, Ozdogru I, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48:2258–62.

    Article  CAS  PubMed  Google Scholar 

  22. Nohria A. Beta-adrenergic blockade for anthracycline- and trastuzumab-induced cardiotoxicity. Is prevention better than cure? Circ Heart Fail. 2013;6:358–61.

    Article  PubMed  Google Scholar 

  23. Kaya MG, Ozkan M, Gunebakmaz O, et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol. 2013;167:2306–10.

    Article  PubMed  Google Scholar 

  24. Seicean S, Seicean A, Alan N, Plana JC, Budd GT, Marwick TH. Cardioprotective effect of β-adrenoceptor blockade in patients with breast cancer undergoing chemotherapy: follow-up study of heart failure. Circ Heart Fail. 2013;6:420–6.

    Article  CAS  PubMed  Google Scholar 

  25. Choe JY, Combs AB, Folkers K. Potentiation of the toxicity of adriamycin by propranolol. Research communications in chemical pathology and pharmacology. Res Commun Chem Pathol Pharmacol. 1978;21:577–80.

    CAS  PubMed  Google Scholar 

  26. Georgakopoulos P, Matsakas E, Karavidas A, et al. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. Am J Hematol. 2010;85:894–6.

    Article  CAS  PubMed  Google Scholar 

  27. Cardinale D, Colombo A, Sandri MT, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114:2474–81.

    Article  CAS  PubMed  Google Scholar 

  28. Okumura K, Jin D, Takai S, Miyazaki M. Beneficial effects of angiotensin-converting enzyme inhibition in adriamycin-induced cardiomyopathy in hamsters. Jpn J Pharmacol. 2002;88:183–8.

    Article  CAS  PubMed  Google Scholar 

  29. Vaynblat M, Shah HR, Bhaskaran D, et al. Simultaneous angiotensin converting enzyme inhibition moderates ventricular dysfunction caused by doxorubicin. Eur J Heart Fail. 2002;4:583–6.

    Article  CAS  PubMed  Google Scholar 

  30. Abd El-Aziz MA, Othman AI, Amer M, El-Missiry MA. Potential protective role of angiotensin-converting enzyme inhibitors captopril and enalapril against adriamycin-induced acute cardiac and hepatic toxicity in rats. J Appl Toxicol. 2001;21:469–73.

    Article  CAS  PubMed  Google Scholar 

  31. Nakamae H, Tsumura K, Terada Y, et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104:2492–8.

    Article  CAS  PubMed  Google Scholar 

  32. Cadeddu C, Piras A, Mantovani G, et al. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J. 2010;160:4871.e1–7.

    Article  Google Scholar 

  33. Gulati G, Heck SL, Ree AH, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): primary results of a randomized, 2 × 2 factorial, placebo-controlled, double blind clinical trial. AHA 2015; abstract 2015-LBCT-20236-AHA.

  34. Pituskin E, Mackey JR, Koshman S, et al. Prophylactic beta blockade preserves left ventricular ejection fraction in HER2-overexpressing breast cancer patients receiving trastuzumab: Primary results of the MANTICORE randomized controlled trial. SABCS 2015; abstract S1-05.

  35. Akpek M, Ozdogru I, Sahin O, et al. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail. 2015;17:81–9.

    Article  CAS  PubMed  Google Scholar 

  36. Bosch X, Rovira M, Sitges M, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol. 2013;61:2355–62.

    Article  CAS  PubMed  Google Scholar 

  37. Riad A, Bien S, Westermann D, et al. Pretreatment with statin attenuates the cardiotoxicity of doxorubicin in mice. Cancer Res. 2009;69:695–9.

    Article  CAS  PubMed  Google Scholar 

  38. Henninger C, Huelsenbeck S, Wenzel P, et al. Chronic heart damage following doxorubicin treatment is alleviated by lovastatin. Pharmacol Res. 2015;91:47–56.

    Article  CAS  PubMed  Google Scholar 

  39. Acar Z, Kale A, Turgut M, et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2011;58:988–9.

    Article  PubMed  Google Scholar 

  40. Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol. 2012;60:2384–90.

    Article  CAS  PubMed  Google Scholar 

  41. Chotenimitkhun R, D’Agostino Jr R, Lawrence JA, et al. Chronic statin administration may attenuate early anthracycline-associated declines in left ventricular ejection function. Can J Cardiol. 2015;31:302e–7a.

    Article  Google Scholar 

  42. Cardinale D, Salvatici M, Sandri MT. Role of biomarkers in cardioncology. Clin Chem Lab Med. 2011;49:1937–48.

    Article  CAS  PubMed  Google Scholar 

  43. Christenson ES, James T, Agrawal V, Park BH. Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin Biochem. 2015;48:223–35. Excellent review on strength and weakness points for the use of various biomarkers in the detection of chemotherapy-induced cardiotoxicity.

  44. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63:2751–68.

    Article  PubMed  Google Scholar 

  45. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG. Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53:e1–90.

    Article  PubMed  Google Scholar 

  46. Eschenhagen T, Force T, Ewer MS, De Keulenaer GW, Suter TM, Anker SD. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2011;13:1–10.

    Article  PubMed  Google Scholar 

  47. Cardinale D, Bacchiani G, Beggiato M, Colombo A, Cipolla CM. Strategies to prevent and treat cardiovascular risk in cancer patients. Semin Oncol. 2013;40:186–98.

    Article  CAS  PubMed  Google Scholar 

  48. Lenihan DJ, Oliva S, Chow EJ, Cardinale D. Cardiac toxicity in cancer survivors. Cancer. 2013;119:2131–42.

    Article  PubMed  Google Scholar 

  49. Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981–8.

    Article  CAS  PubMed  Google Scholar 

  50. Sengupta PP, Northfelt DW, Gentile F, Zamorano JL, Khandheria BK. Trastuzumab-induced cardiotoxicity: heart failure at the crossroads. Mayo Clin Proc. 2008;83:197–203.

    Article  CAS  PubMed  Google Scholar 

  51. Martin M, Esteva FJ, Alba E, Khandheria B, Pérez-Isla L, Garcìa-Sàenz JA. Minimizing cardiotoxicity while optimizing treatment efficacy with trastuzumab: review and expert recommendations. Oncologist. 2009;14:1–11.

    Article  CAS  PubMed  Google Scholar 

  52. Telli ML, Hunt SA, Carlson RW, Guardino AE. Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility. J Clin Oncol. 2007;25:3525–33.

    Article  CAS  PubMed  Google Scholar 

  53. De Angelis A, Piegari E, Cappetta D, et al. Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation. 2010;121:276–92.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sharp III TE, George JC. Stem cell therapy and breast cancer treatment: review of stem cell research a potential therapeutic impact against cardiotoxicities due to breast cancer treatment. Front Oncol. 2014;4:299.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Oliveira MS, Carvalho JL, De Angelis Campo AC, et al. Doxorubicin has in vivo toxicological effects on ex vivo cultured mesenchymal stem cells. Toxicol Lett. 2014;224:380–6.

    Article  CAS  PubMed  Google Scholar 

  56. De Angelis A, Piegari E, Cappetta D, et al. SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells. Int J Cardiol. 2015;189:30–44.

    Article  PubMed  Google Scholar 

  57. Mishra SI, Scherer RW, Snyder C, Geigle PM, Berlanstein DR, Topaloglu O. Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev. 2012;8, CD008465. doi:10.1002/14651858.

    PubMed  Google Scholar 

  58. Ascensão A, Oliveira PJ, Magalhães J. Exercise as a beneficial adjunct therapy during doxorubicin treatment. Role of mitochondria in cardioprotection. Int J Cardiol. 2012;156:4–10.

    Article  PubMed  Google Scholar 

  59. Marques-Aleixo I, Santos-Alves E, Mariani D, et al. Physical exercise prior and during treatment reduces sub-chronic doxirubicin-induced mitochondrial toxicity and oxidative stress. Mitochondrion. 2015;20:22–33.

    Article  CAS  PubMed  Google Scholar 

  60. Scott JM, Khakoo A, Mackey JR, Haykowsky MJ, Douglas PS, Jones LW. Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation. 2011;124:642–50.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jones L, Dolinsky VW, Haykowsky MJ, et al. Effects of aerobic training to improve cardiovascular function and prevent cardiac remodeling after cytotoxic therapy in early breast cancer. AACR 2011; abstract 5024.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Cardinale.

Ethics declarations

Conflict of Interest

Daniela Cardinale, Gina Biasillo, and Carlo Maria Cipolla declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardio-Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardinale, D., Biasillo, G. & Cipolla, C.M. Curing Cancer, Saving the Heart: A Challenge That Cardioncology Should Not Miss. Curr Cardiol Rep 18, 51 (2016). https://doi.org/10.1007/s11886-016-0731-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-016-0731-z

Keywords

Navigation