Skip to main content

Advertisement

Log in

Advances in the Diagnosis and Treatment of Leptomeningeal Disease

  • Neuro-Oncology (P.Y. Wen, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Leptomeningeal disease (LMD) is a rare, late complication of systemic cancer and is associated with significant neurological morbidity and high mortality. Here we provide an overview of this condition, summarizing key recent research findings and clinical practice trends in its diagnosis and treatment. We also review current clinical trials for LMD.

Recent Findings

Improved molecular diagnostic tools are in development to enable more sensitive detection of LMD, including circulating tumor cells and circulating tumor DNA. The use of targeted and CNS-penetrant therapeutics has shown survival improvements with tyrosine kinase inhibitors, antibody–drug conjugates, and select chemotherapy. However, these studies have primarily been phase I/II and retrospective analyses. There remains a dearth of clinical trials that include LMD patients.

Summary

The combination of patient-specific molecular information and novel therapeutic approaches holds significant promise for improving outcomes in patients with LMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kaplan JG, DeSouza TG, Farkash A, Shafran B, Pack D, Rehman F, et al. Leptomeningeal metastases: comparison of clinical features and laboratory data of solid tumors, lymphomas and leukemias. J Neurooncol. 1990;9:225–9.

    Article  CAS  PubMed  Google Scholar 

  2. Le Rhun E, Galanis E. Leptomeningeal metastases of solid cancer. Curr Opin Neurol. 2016;29:797–805.

    Article  PubMed  CAS  Google Scholar 

  3. Lamba N, Wen PY, Aizer AA. Epidemiology of brain metastases and leptomeningeal disease. Neuro Oncol. 2021;23:1447–56.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Singh SK, Leeds NE, Ginsberg LE. MR imaging of leptomeningeal metastases: Comparison of three sequences. Am J Neuroradiol. 2002;23:817–21.

    PubMed  PubMed Central  Google Scholar 

  5. Singh SK, Agris JM, Leeds NE, Ginsberg LE. Intracranial leptomeningeal metastases: comparison of depiction at FLAIR and contrast-enhanced MR imaging. Radiology. 2000;217:50–3.

    Article  CAS  PubMed  Google Scholar 

  6. Kleinschmidt-Demasters BK, Damek DM. The imaging and neuropathological effects of bevacizumab (Avastin) in patients with leptomeningeal carcinomatosis. J Neurooncol. 2010;96:375–84.

    Article  CAS  PubMed  Google Scholar 

  7. Harris P, Diouf A, Guilbert F, Ameur F, Letourneau-Guillon L, Ménard C, et al. Diagnostic reliability of leptomeningeal disease using magnetic resonance imaging. Cureus. 2019;11: e4416.

    PubMed  PubMed Central  Google Scholar 

  8. Clarke JL, Perez HR, Jacks LM, Panageas KS, Deangelis LM. Leptomeningeal metastases in the MRI era. Neurology. 2010;74:1449–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Le Rhun E, Taillibert S, Chamberlain M. Carcinomatous meningitis: leptomeningeal metastases in solid tumors. Surg Neurol Int. 2013;4:S265-288.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Glantz MJ, Cole BF, Glantz LK, Cobb J, Mills P, Lekos A, et al. Cerebrospinal fluid cytology in patients with cancer: minimizing false- negative results. Cancer. 1998;82:733–9.

    Article  CAS  PubMed  Google Scholar 

  11. Wasserstrom WR, Glass JP, Posner JB. Diagnosis and treatment of leptomeningeal metastases from solid tumors: experience with 90 patients. Cancer. 1982;49:759–72.

    Article  CAS  PubMed  Google Scholar 

  12. Chamberlain MC, Kormanik PA, Glantz MJ. A comparison between ventricular and lumbar cerebrospinal fluid cytology in adult patients with leptomeningeal metastases. Neuro Oncol. 2001;3:42–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Manne A, Paluri R. Biomarkers for carcinoma meningitis in solid tumors. J Adv Med Med Res. 2018;26:1–13.

    Article  Google Scholar 

  14. Walbert T, Groves MD. Known and emerging biomarkers of leptomeningeal metastasis and its response to treatment. Future Oncol. 2010;6:287–97.

    Article  CAS  PubMed  Google Scholar 

  15. Corsini E, Bernardi G, Gaviani P, Silvani A, De Grazia U, Ciusani E, et al. Intrathecal synthesis of tumor markers is a highly sensitive test in the diagnosis of leptomeningeal metastasis from solid cancers. Clin Chem Lab Med. 2009;47:874–9.

    Article  CAS  PubMed  Google Scholar 

  16. Herrlinger U, Wiendl H, Renninger M, Förschler H, Dichgans J, Weller M. Vascular endothelial growth factor (VEGF) in leptomeningeal metastasis: diagnostic and prognostic value. Br J Cancer. 2004;91:219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reijneveld JC, Brandsma D, Boogerd W, Bonfrer JGM, Kalmijn S, Voest EE, et al. CSF levels of angiogenesis-related proteins in patients with leptomeningeal metastases. Neurology. 2005;65:1120–2.

    Article  CAS  PubMed  Google Scholar 

  18. Groves MD, Hess KR, Puduvalli VK, Colman H, Conrad CA, Gilbert MR, et al. Biomarkers of disease: cerebrospinal fluid vascular endothelial growth factor (VEGF) and stromal cell derived factor (SDF)-1 levels in patients with neoplastic meningitis (NM) due to breast cancer, lung cancer and melanoma. J Neurooncol. 2009;94:229–34.

    Article  CAS  PubMed  Google Scholar 

  19. Ashworth T. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J. 1869;14:146–9.

    Google Scholar 

  20. Zhe X, Cher ML, Bonfil RD. Circulating tumor cells: finding the needle in the haystack. Am J Cancer Res. 2011;1:740–51.

    PubMed  PubMed Central  Google Scholar 

  21. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450:1235–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghossein RA, Bhattacharya S, Rosai J. Molecular detection of micrometastases and circulating tumor cells in solid tumors. Clin Cancer Res. 1999;5:1950–60.

    CAS  PubMed  Google Scholar 

  23. Le Rhun E, Massin F, Tu Q, Bonneterre J, Bittencourt MDC, Faure GC. Development of a new method for identification and quantification in cerebrospinal fluid of malignant cells from breast carcinoma leptomeningeal metastasis. BMC Clin Pathol. 2012;12:21.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Le Rhun E, Tu Q, De Carvalho BM, Farre I, Mortier L, Cai H, et al. Detection and quantification of CSF malignant cells by the Cell Search® technology in patients with melanoma leptomeningeal metastasis. Med Oncol. 2013;30:538.

    Article  PubMed  CAS  Google Scholar 

  25. van Bussel MTJ, Pluim D, Bol M, Beijnen JH, Schellens JHM, Brandsma D. EpCAM-based assays for epithelial tumor cell detection in cerebrospinal fluid. J Neurooncol. 2018;137:1–10.

    Article  PubMed  CAS  Google Scholar 

  26. •Van Bussel MTJ, Pluim Di, Milojkovic Kerklaan B, Bol M, Sikorska K, Linders DTC, et al. Circulating epithelial tumor cell analysis in CSF in patients with leptomeningeal metastases. Neurology. 2020;94:e521–8. Study that establishes the high sensitivity and specificity of CSF CTCs for the diagnosis of LMD.

    Article  PubMed  CAS  Google Scholar 

  27. Malani R, Fleisher M, Kumthekar P, Lin X, Omuro A, Groves MD, et al. Cerebrospinal fluid circulating tumor cells as a quantifiable measurement of leptomeningeal metastases in patients with HER2 positive cancer. J Neurooncol. 2020;148:599–606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Moller P, Moldenhauer G, Hämmerling GJ. Immunohistochemical study of the expression of a Mr34, 000 human epithelium-specific surface glycoprotein in normal and malignant tissues. Cancer Res. 1987;47:2883–91.

    PubMed  Google Scholar 

  29. Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15:740–6.

    Article  CAS  PubMed  Google Scholar 

  30. ••Pecot CV, Bischoff FZ, Mayer JA, Wong KL, Pham T, Bottsford-Miller J, et al. A novel platform for detection of CK + and CK - CTCs. Cancer Discov. 2011;1:580–6. This paper describes a novel assay for the detection of CTCs using both epithelial and mesenchymal markers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.

    Article  CAS  PubMed  Google Scholar 

  32. Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9:eaan2415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DWY, Kaper F, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4:136ra68.

    Article  PubMed  CAS  Google Scholar 

  34. Leal A, van Grieken NCT, Palsgrove DN, Phallen J, Medina JE, Hruban C, et al. White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer. Nat Commun. 2020;11:525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De Mattos-Arruda L, Mayor R, Ng CKY, Weigelt B, Martínez-Ricarte F, Torrejon D, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6:8839.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Seoane J, De Mattos-Arruda L, Le RE, Bardelli A, Weller M. Cerebrospinal fluid cell-free tumour DNA as a liquid biopsy for primary brain tumours and central nervous system metastases. Ann Oncology. 2019;30:211–8.

    Article  CAS  Google Scholar 

  37. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wang Y, Springer S, Zhang M, McMahon KW, Kinde I, Dobbyn L, et al. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci USA. 2015;112:9704–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. •Zhao Y, He JY, Zou YL, Guo XS, Cui JZ, Guo L, et al. Evaluating the cerebrospinal fluid ctDNA detection by next-generation sequencing in the diagnosis of meningeal carcinomatosis. BMC Neurol. 2019;19:331. This study compared CSF ctDNA, cytology, and neuroimaging (MRI and CT) from 35 patients with meningeal carcinomatosis from various cancers and demonstrates the high sensitivity of ctDNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ballester LY, Glitza Oliva IC, Douse DY, Chen MM, Lan C, Haydu LE, et al. Evaluating circulating tumor DNA from the cerebrospinal fluid of patients with melanoma and leptomeningeal disease. J Neuropathol Exp Neurol. 2018;77:628–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ge M, Zhan Q, Zhang Z, Ji X, Zhou X, Huang R, et al. Different next-generation sequencing pipelines based detection of tumor DNA in cerebrospinal fluid of lung adenocarcinoma cancer patients with leptomeningeal metastases. BMC Cancer. 2019;19:143.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jiang B-Y, Li Y, Chuai S, Zhang Z, Yang J-J, Zhong W, et al. NGS to reveal heterogeneity between cerebrospinal fluid and plasma ctDNA among non-small cell lung cancer patients with leptomeningeal carcinomatosis. J Clin Oncol. 2017;35:9022.

    Article  Google Scholar 

  43. Choi W, Cho Y, Park SY, Hwang KH, Han JY, Lee Y. A nanowire-based liquid biopsy method using cerebrospinal fluid cell-free DNA for targeted management of leptomeningeal carcinomatosis. J Cancer Res Clin Oncol. 2021;147:213–22.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng MM, Li YS, Tu HY, Jiang BY, Yang JJ, Zhou Q, et al. Genotyping of cerebrospinal fluid associated with osimertinib response and resistance for leptomeningeal metastases in EGFR-mutated NSCLC. J Thorac Oncol. 2021;16:250–8.

    Article  PubMed  CAS  Google Scholar 

  45. Stetson D, Ahmed A, Xu X, Nuttall BRB, Lubinski TJ, Johnson JH, et al. Orthogonal comparison of four plasma NGS tests with tumor suggests technical factors are a major source of assay discordance. JCO Precis Oncol. 2019;3:1–9.

    PubMed  Google Scholar 

  46. Razavi P, Li BT, Brown DN, Jung B, Hubbell E, Shen R, et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med. 2019;25:1928–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.

    Article  CAS  PubMed  Google Scholar 

  48. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E, Smolsky M, et al. MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro Oncol. 2012;14:689–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Toh WS, Lai RC, Zhang B, Lim SK. MSC exosome works through a protein-based mechanism of action. Biochem Soc Trans. 2018;46:843–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou L, Lv T, Zhang Q, Zhu Q, Zhan P, Zhu S, et al. The biology, function and clinical implications of exosomes in lung cancer. Cancer Lett. 2017;407:84–92.

    Article  CAS  PubMed  Google Scholar 

  52. Jiang B-Y, Li Y, Wu X, Bao H, Ding Y, Yang J, et al. Identification of leptomeningeal metastasis-specific exosomal miRNA signature in cerebrospinal fluid of non-small-cell lung cancer patients. J Clin Oncol. 2018;13:S685.

    Google Scholar 

  53. Xu Q, Ye L, Huang L, Zhou L, Chen X, Ye M, et al. Serum exosomal miRNA might be a novel liquid biopsy to identify leptomeningeal metastasis in non-small cell lung cancer. Onco Targets Ther. 2021;14:2327–35.

    Article  PubMed  PubMed Central  Google Scholar 

  54. McGranahan T, Nagpal S. A neuro-oncologist’s perspective on management of brain metastases in patients with EGFR mutant non-small cell lung cancer. Options in Oncol. 2017;18:22.

    Article  Google Scholar 

  55. •Maillie L, Salgado LR, Lazarev S. A systematic review of craniospinal irradiation for leptomeningeal disease: past, present, and future. Clin Transl Oncol. 2021;23:2109–19. An excellent review on craniospinal irradiation in LMD, providing an overview of the research in the field, treatment, toxicities, and outcomes in 275 patients.

  56. Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10:1037–44.

    Article  PubMed  Google Scholar 

  57. Yang TJ, Wijetunga NA, Yamada J, Wolden S, Mehallow M, Goldman DA, et al. Clinical trial of proton craniospinal irradiation for leptomeningeal metastases. Neuro Oncol. 2021;23:134–43.

    Article  CAS  PubMed  Google Scholar 

  58. Brown AP, Barney CL, Grosshans DR, McAleer MF, De Groot JF, Puduvalli VK, et al. Proton beam craniospinal irradiation reduces acute toxicity for adults with medulloblastoma. Int J Radiat Oncol Biol Phys. 2013;86:277–84.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Brown PD, Gondi V, Pugh S, Tome WA, Wefel JS, Armstrong TS, et al. Hippocampal avoidance during whole-brain radiotherapy plus memantine for patients with brain metastases: phase III trial NRG oncology CC001. J Clin Oncol. 2020;38:1019–29.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jung TY, Chung WK, Oh IJ. The prognostic significance of surgically treated hydrocephalus in leptomeningeal metastases. Clin Neurol Neurosurg. 2014;119:80–3.

    Article  PubMed  Google Scholar 

  61. Su YH, Chiang CL, Yang HC, Hu YS, Chen YW, Luo YH, et al. Cerebrospinal fluid diversion and outcomes for lung cancer patients with leptomeningeal carcinomatosis. Acta Neurochir (Wien). 2022;164:459–67.

  62. Nigim F, Critchlow JF, Kasper EM. Role of ventriculoperitoneal shunting in patients with neoplasms of the central nervous system: an analysis of 59 cases. Mol Clin Oncol. 2015;3:1381–6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Omuro AMP, Lallana EC, Bilsky MH, DeAngelis LM. Ventriculoperitoneal shunt in patients with leptomeningeal metastasis. Neurology. 2005;64:1625–7.

    Article  PubMed  Google Scholar 

  64. Lassman AB, Abrey LE, Shah GD, Shah GG, Panageas KS, Begemann M, et al. Systemic high-dose intravenous methotrexate for central nervous system metastases. J Neurooncol. 2006;78:255–60.

    Article  CAS  PubMed  Google Scholar 

  65. Bazan F, Dobi E, Royer B, Curtit E, Mansi L, Menneveau N, et al. Systemic high-dose intravenous methotrexate in patients with central nervous system metastatic breast cancer. BMC Cancer. 2019;19:1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cagney DN, Martin AM, Catalano PJ, Reitman ZJ, Mezochow GA, Lee EQ, et al. Impact of pemetrexed on intracranial disease control and radiation necrosis in patients with brain metastases from non-small cell lung cancer receiving stereotactic radiation. Radiother Oncol. 2018;126:511–8.

    Article  CAS  PubMed  Google Scholar 

  67. Kumthekar P, Grimm SA, Avram MJ, Kaklamani V, Helenowski I, Rademaker A, et al. Pharmacokinetics and efficacy of pemetrexed in patients with brain or leptomeningeal metastases. J Neurooncol. 2013;112:247–55.

    Article  CAS  PubMed  Google Scholar 

  68. Lu Y-S, Wei-Wu Chen T, Lin C-H, Yeh D-C, Tseng L-M, Wu P-F, et al. Cancer therapy: clinical bevacizumab preconditioning followed by etoposide and cisplatin is highly effective in treating brain metastases of breast cancer progressing from whole-brain radiotherapy. Clin Cancer Res. 2015;21:1851–8.

    Article  CAS  PubMed  Google Scholar 

  69. Wu PF, Lin CH, Kuo CH, Chen WW, Yeh DC, Liao HW, et al. A pilot study of bevacizumab combined with etoposide and cisplatin in breast cancer patients with leptomeningeal carcinomatosis. BMC Cancer. 2015;15:299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Groves MD, Degroot J, Tremont I, Forman AD, Kang S, Pei B-L, et al. A pilot study of systemically administered bevacizumab in patients with neoplastic meningitis: imaging, clinical, CSF, and biomarker outcomes. Neuro Oncol. 2011;13:iii85–91.

    Google Scholar 

  71. Melisko ME, Assefa M, Hwang J, DeLuca A, Park JW, Rugo HS. Phase II study of irinotecan and temozolomide in breast cancer patients with progressing central nervous system disease. Breast Cancer Res Treat. 2019;177:401–8.

    Article  CAS  PubMed  Google Scholar 

  72. Morikawa A, De Stanchina E, Pentsova E, Kemeny MM, Li BT, Tang K, et al. Phase I study of intermittent high-dose lapatinib alternating with capecitabine for HER2-positive breast cancer patients with central nervous system metastases. Clin Cancer Res. 2019;25:3784–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Demeule M, Currie JC, Bertrand Y, Ché C, Nguyen T, Régina A, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. J Neurochem. 2008;106:1534–44.

    Article  CAS  PubMed  Google Scholar 

  74. ••Kumthekar P, Tang SC, Brenner AJ, Kesari S, Piccioni DE, Anders C, et al. ANG1005, a brain-penetrating peptide–drug conjugate, shows activity in patients with breast cancer with leptomeningeal carcinomatosis and recurrent brain metastases. Clin Cancer Res. 2020;26:2789–99. Phase II study of the peptide-drug conjugate ANG1005 (paclitaxel trevatide) in recurrent breast cancer brain metastasis patients, including 28 patients with LMD. This study demonstrated an intracranial control rate of 79% for the LMD patients.

    Article  CAS  PubMed  Google Scholar 

  75. Cross DAE, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4:1046–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. •Park S, Lee MH, Seong M, Kim ST, Kang JH, Cho BC, et al. A phase II, multicenter, two cohort study of 160 mg osimertinib in EGFR T790M-positive non-small-cell lung cancer patients with brain metastases or leptomeningeal disease who progressed on prior EGFR TKI therapy. Ann Oncol. 2020;31:1397–404. . Phase II study of the 3rd-generation TKI osimertinib in EGFR T70M NSCLC patients who had progressed on prior EGFR TKIs. The study showed promising survival benefit and safety profile, including in the LMD cohort of 17 patients.

    Article  CAS  PubMed  Google Scholar 

  77. Ross Camidge D, Kim DW, Tiseo M, Langer CJ, Ahn MJ, Shaw AT, et al. Exploratory analysis of brigatinib activity in patients with anaplastic lymphoma kinase-positive non–small-cell lung cancer and brain metastases in two clinical trials. J Clin Oncol. 2018;36:2693–701.

    Article  PubMed  Google Scholar 

  78. Solomon BJ, Besse B, Bauer TM, Felip E, Soo RA, Camidge DR, et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol. 2018;19:1654–67.

    Article  CAS  PubMed  Google Scholar 

  79. Gadgeel S, Peters S, Mok T, Shaw AT, Kim DW, Ou SI, et al. Alectinib versus crizotinib in treatment-naive anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer: CNS efficacy results from the ALEX study. Ann Oncol. 2018;29:2214–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim DW, Mehra R, Tan DSW, Felip E, Chow LQM, Camidge DR, et al. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol. 2016;17:452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chow LQ, Barlesi F, Bertino EM, van den Bent MJ, Wakelee H, Wen PY, et al. Results of the ASCEND-7 phase II study evaluating ALK inhibitor (ALKi) ceritinib in patients (pts) with ALK+ non-small cell lung cancer (NSCLC) metastatic to the brain. Ann Oncol. 2019;30:v602–3.

    Article  Google Scholar 

  82. ••Shaw AT, Bauer TM, de Marinis F, Felip E, Goto Y, Liu G, et al. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N Engl J Med. 2020;383:2018–29. Phase III trial comparing lorlatinib with crizotinib in 296 patients with advanced ALK-positive NSCLC with no prior systemic treatment for metastatic disease. Significantly higher PFS and intracranial response rates were seen with lorlatinib.

    Article  CAS  PubMed  Google Scholar 

  83. Lin NU, Borges V, Anders C, Murthy RK, Paplomata E, Hamilton E, et al. Intracranial efficacy and survival with tucatinib plus trastuzumab and capecitabine for previously treated HER2-positive breast cancer with brain metastases in the HER2CLIMB trial. J Clin Oncol. 2020;38:2610–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. ••Murthy RK, Loi S, Okines A, Paplomata E, Hamilton E, Hurvitz SA, et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N Engl J Med. 2020;382:597–609. Randomized controlled trial of patients with HER2-positive metastatic breast cancer who had been heavily pre-treated. Patients received trastuzumab, capecitabine, and either placebo or tucatinib, with improved PFS seen in the tucatinib containing cohort.

    Article  CAS  PubMed  Google Scholar 

  85. Stringer-Reasor EM, O’Brien BJ, Topletz-Erickson A, White JB, Lobbous M, Riley K, et al. Pharmacokinetic (PK) analyses in CSF and plasma from TBCRC049, an ongoing trial to assess the safety and efficacy of the combination of tucatinib, trastuzumab and capecitabine for the treatment of leptomeningeal metastasis (LM) in HER2 positive breast cancer. J Clin Oncol. 2021;39:1044–1044.

    Article  Google Scholar 

  86. Madden R, Kosari S, Peterson GM, Bagheri N, Thomas J. Lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer: a systematic review. Int J of Clin Pharmacol Ther. 2018;56:72–80.

    Article  CAS  Google Scholar 

  87. Freedman RA, Gelman RS, Anders CK, Melisko ME, Parsons HA, Cropp AM, et al. TBCRC 022: a phase II trial of neratinib and capecitabine for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. J Clin Oncol. 2019;37:1081–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Davies MA, Saiag P, Robert C, Grob J-J, Flaherty KT, Arance A, et al. Dabrafenib plus trametinib in patients with BRAF V600-mutant melanoma brain metastases (COMBI-MB): a multi-cohort, open-label, phase 2 trial. Lancet Oncol. 2017;18:863–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Long GV, Atkinson V, Lo S, Sandhu S, Guminski AD, Brown MP, et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncol. 2018;19:672–81.

    Article  CAS  PubMed  Google Scholar 

  90. •Brastianos PK, Lee EQ, Cohen JV, Tolaney SM, Lin NU, Wang N, et al. Single-arm, open-label phase 2 trial of pembrolizumab in patients with leptomeningeal carcinomatosis. Nat Med. 2020;26:1280–4. Manuscript presenting the data from the leptomeningeal cohort of a single-arm, phase II study of pembrolizumab in patients with metastatic disease, showing a 3-month OS of 60%.

    Article  CAS  PubMed  Google Scholar 

  91. Montemurro F, Delaloge S, Barrios CH, Wuerstlein R, Anton A, Brain E, et al. Trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer and brain metastases: exploratory final analysis of cohort 1 from KAMILLA, a single-arm phase IIIb clinical trial. Ann Oncol. 2020;31:1350–8.

    Article  CAS  PubMed  Google Scholar 

  92. Jerusalem G, Park YH, Yamashita T, Hurvitz SA, Chen S, Cathcart J, et al. CNS metastases in HER2-positive metastatic breast cancer treated with trastuzumab deruxtecan: DESTINY-Breast01 subgroup analyses. Ann Oncol. 2020;31:S63–4.

    Article  Google Scholar 

  93. Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384:1529–41.

    Article  CAS  PubMed  Google Scholar 

  94. Brenner AJ, Pandey R, Chiou J, Floyd J, Surapreneni P, Kaklamani V, et al. Abstract PD13–05: delivery and activity of SN-38 by sacituzumab govitecan in breast cancer brain metastases. Cancer Res. 2021;81:PD13-05.

    Article  Google Scholar 

  95. Bonneau C, Paintaud G, Trédan O, Dubot C, Desvignes C, Dieras V, et al. Phase I feasibility study for intrathecal administration of trastuzumab in patients with HER2 positive breast carcinomatous meningitis. Eur J Cancer. 2018;95:75–84.

    Article  CAS  PubMed  Google Scholar 

  96. Kumthekar P, Lassman AB, Lin N, Grimm S, Gradishar W, Pentsova E, et al. LPTO-02. Intrathecal (IT) trastuzumab for the treatment of leptomeningeal disease (LM) in patients (PTS) with human epidermal receptor-2 positive (HER2+) cancer: a multicenter phase 1/2 study. Neuro-Oncology Adv. 2019;1:6.

    Article  Google Scholar 

  97. Glantz MJ, Jaeckle KA, Chamberlain MC, Phuphanich S, Recht L, Swinnen LJ, et al. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res. 1999;5:3394–402.

    CAS  PubMed  Google Scholar 

  98. Glantz MJ, LaFollette S, Jaeckle KA, Shapiro W, Swinnen L, Rozental JR, et al. Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J Clin Oncol. 1999;17:3110–6.

    Article  CAS  PubMed  Google Scholar 

  99. Jaeckle KA, Phuphanich S, Bent MJ, Aiken R, Batchelor T, Campbell T, et al. Intrathecal treatment of neoplastic meningitis due to breast cancer with a slow-release formulation of cytarabine. Br J Cancer. 2001;84:157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jaeckle KA, Batchelor T, O’Day SJ, Phuphanich S, New P, Lesser G, et al. An open label trial of sustained-release cytarabine (DepoCyt) for the intrathecal treatment of solid tumor neoplastic meningitis. J Neurooncol. 2002;57:231–9.

    Article  PubMed  Google Scholar 

  101. •Le Rhun E, Wallet J, Mailliez A, Le Deley MC, Rodrigues I, Boulanger T, et al. Intrathecal liposomal cytarabine plus systemic therapy versus systemic chemotherapy alone for newly diagnosed leptomeningeal metastasis from breast cancer. Neuro Oncol. 2020;22:524–38. One of the few phase III trials in the field evaluating the benefit of intrathecal cytarabine on patients with LMD.

    Article  PubMed  CAS  Google Scholar 

  102. Chamberlain MC, Tsao-Wei DD, Groshen S. Phase II trial of intracerebrospinal fluid etoposide in the treatment of neoplastic meningitis. Cancer. 2006;106:2021–7.

    Article  CAS  PubMed  Google Scholar 

  103. Grossman SA, Finkelstein DM, Ruckdeschel JC, Trump DL, Moynihan TT, Ettinger DS. Randomized prospective comparison of intraventricular methotrexate and thiotepa in patients with previously untreated neoplastic meningitis. J Clin Oncol. 1993;11:561–9.

    Article  CAS  PubMed  Google Scholar 

  104. Pan Z, Yang G, He H, Zhao G, Yuan T, Li Y, et al. Concurrent radiotherapy and intrathecal methotrexate for treating leptomeningeal metastasis from solid tumors with adverse prognostic factors: a prospective and single-arm study. Int J Cancer. 2016;139:1864–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pan Z, Yang G, He H, Cui J, Li W, Yuan T, et al. Intrathecal pemetrexed combined with involved-field radiotherapy as a first-line intra-CSF therapy for leptomeningeal metastases from solid tumors: a phase I/II study. Ther Adv Med Oncol. 2020;12:1–14.

    Article  CAS  Google Scholar 

  106. Pan Z, Yang G, Cui J, Li W, Li Y, Gao P, et al. A pilot phase 1 study of intrathecal pemetrexed for refractory leptomeningeal metastases from non-small-cell lung cancer. Front Oncol. 2019;30:838.

    Article  Google Scholar 

  107. Fan C, Zhao Q, Li L, Shen W, Du Y, Teng C, et al. Efficacy and safety of intrathecal pemetrexed combined with dexamethasone for treating TKI-failed leptomeningeal metastases from EGFR-mutant NSCLC—a prospective open-label single-arm phase I/II clinical trial (unique identifier: ChiCTR1800016615). J Thorac Oncol. 2021;16:1359–68.

    Article  CAS  PubMed  Google Scholar 

  108. Bleyer WA, Pizzo PA, Spence AM, Platt WD, Benjamin DR, Kolins J, et al. The Ommaya reservoir. Newly recognized complications and recommendations for insertion and use. Cancer. 1978;41:2431–7.

    Article  CAS  PubMed  Google Scholar 

  109. Li J, Li X, Tong X, Liu J, Huang B, Chen M, et al. Investigation of the optimal duration of bed rest in the supine position to reduce complications after lumbar puncture combined with intrathecal chemotherapy: a multicenter prospective randomized controlled trial. Support Care Cancer. 2018;26:2995–3002.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Shapiro WR, Young DF, Mehta BM. Methotrexate: distribution in cerebrospinal fluid after intravenous, ventricular and lumbar injections. N Engl J Med. 1975;293:161–6.

    Article  CAS  PubMed  Google Scholar 

  111. Glantz MJ, Van Horn A, Fisher R, Chamberlain MC. Route of intracerebrospinal fluid chemotherapy administration and efficacy of therapy in neoplastic meningitis. Cancer. 2010;116:1947–52.

    Article  PubMed  Google Scholar 

  112. De Oca Delgado MM, Díaz BC, Zambrano JS, Juárez VG, Martínez MSL, Martínez EC, et al. The comparative treatment of intraventricular chemotherapy by Ommaya reservoir vs. lumbar puncture in patients with leptomeningeal carcinomatosis. Front Oncol. 2018;8:509.

    Article  Google Scholar 

  113. Zagouri F, Sergentanis TN, Bartsch R, Berghoff AS, Chrysikos D, De Azambuja E, et al. Intrathecal administration of trastuzumab for the treatment of meningeal carcinomatosis in HER2-positive metastatic breast cancer: a systematic review and pooled analysis. Breast Cancer Res Treat. 2013;139:13–22.

    Article  CAS  PubMed  Google Scholar 

  114. Figura NB, Long W, Yu M, Robinson TJ, Mokhtari S, Etame AB, et al. Intrathecal trastuzumab in the management of HER2+ breast leptomeningeal disease: a single institution experience. Breast Cancer Res Treat. 2018;169:391–6.

    Article  CAS  PubMed  Google Scholar 

  115. Glitza IC, Phillips S, Brown C, Haymaker CL, Bassett RL, Lee JJ, et al. Single-center phase I/Ib study of concurrent intrathecal (IT) and intravenous (IV) nivolumab (N) for metastatic melanoma (MM) patients (pts) with leptomeningeal disease (LMD). J Clin Oncol. 2020;38:10008–10008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akanksha Sharma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Low, J.T. & Kumthekar, P. Advances in the Diagnosis and Treatment of Leptomeningeal Disease. Curr Neurol Neurosci Rep 22, 413–425 (2022). https://doi.org/10.1007/s11910-022-01198-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-022-01198-3

Keywords

Navigation