Skip to main content
Log in

The Role of the Vasculature in Heart Failure

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

The contribution of the vasculature in the development and progression of heart failure (HF) syndromes is poorly understood and often neglected. Incorporating both arterial and venous systems, the vasculature plays a significant role in the regulation of blood flow throughout the body in meeting its metabolic requirements. A deterioration or imbalance between the cardiac and vascular interaction can precipitate acute decompensated HF in both preserved and reduced ejection fraction phenotypes. This is characterised by the increasingly recognised concept of ventricular-arterial coupling: a well-balanced relationship between ventricular and vascular stiffness, which has major implications in HF. Often, the cause of decompensation is unknown, with international guidelines mainly centred on arrhythmia, infection, acute coronary syndrome and its mechanical complications as common causes of decompensation; the vascular component is often underrecognised. A better understanding of the vascular contribution in cardiovascular failure can improve risk stratification, earlier diagnosis and facilitate earlier optimal treatment. This review focuses on the role of the vasculature by integrating the concepts of ventricular-arterial coupling, arterial stiffness and venous return in a failing heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted from Summers et al. [4]

Similar content being viewed by others

References

  1. Ikonomidis I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA, et al. The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur J Heart Fail. 2019;21(4):402–24.

    Article  PubMed  Google Scholar 

  2. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021.

  3. Lim HS. Hemodynamic and physiologic approach to cardiogenic shock. J Am Coll Cardiol. 2019;74(4):592–3.

    Article  PubMed  Google Scholar 

  4. Summers RL, Amsterdam E. Pathophysiology of acute decompensated heart failure. Heart Fail Clin. 2009;5(1):9–17.

    Article  PubMed  Google Scholar 

  5. Weber T. The role of arterial stiffness and central hemodynamics in heart failure. Int J Heart Fail. 2020;2(4):209–30.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tran P, Maddock H, Banerjee P. Myocardial Fatigue: a mechano-energetic concept in heart failure. Curr Cardiol Rep. 2022.

  7. Lyle MA, Brozovich FV. HFpEF, a Disease of the Vasculature: A Closer Look at the Other Half. Mayo Clin Proc. 2018;93(9):1305–14.

    Article  PubMed  Google Scholar 

  8. Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60(16):1455–69.

    Article  CAS  PubMed  Google Scholar 

  9. Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Cardiol Clin. 2011;29(3):447–59.

    Article  PubMed  Google Scholar 

  10. Chamarthy MR, Kandathil A, Kalva SP. Pulmonary vascular pathophysiology. Cardiovasc Diagn Ther. 2018;8(3):208–13.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ross J. Mechanisms of cardiac contraction What roles for preload, afterload and inotropic state in heart failure? Eur Heart J. 1983;4 Suppl A:19–28.

    Article  PubMed  Google Scholar 

  12. Han JC, Loiselle D, Taberner A, Tran K. Re-visiting the Frank-Starling nexus. Prog Biophys Mol Biol. 2021;159:10–21.

    Article  PubMed  Google Scholar 

  13. Tran P, Banerjee P. Iatrogenic decompensated heart failure. Curr Heart Fail Rep. 2020;17(2):21–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dikshit K, Vyden JK, Forrester JS, Chatterjee K, Prakash R, Swan HJ. Renal and extrarenal hemodynamic effects of furosemide in congestive heart failure after acute myocardial infarction. N Engl J Med. 1973;288(21):1087–90.

    Article  CAS  PubMed  Google Scholar 

  15. Chirinos JA, Segers P, Gillebert TC, Gupta AK, De Buyzere ML, De Bacquer D, et al. Arterial properties as determinants of time-varying myocardial stress in humans. Hypertension. 2012;60(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  16. Sonnenblick EH, Downing SE. Afterload as a primary determinat of ventricular performance. Am J Physiol. 1963;204:604–10.

    Article  CAS  PubMed  Google Scholar 

  17. Weber T, Chirinos JA. Pulsatile arterial haemodynamics in heart failure. Eur Heart J. 2018;39(43):3847–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Triposkiadis F, Giamouzis G, Boudoulas KD, Karagiannis G, Skoularigis J, Boudoulas H, et al. Left ventricular geometry as a major determinant of left ventricular ejection fraction: physiological considerations and clinical implications. Eur J Heart Fail. 2018;20(3):436–44.

    Article  CAS  PubMed  Google Scholar 

  19. Little RC, Little WC. Cardiac preload, afterload, and heart failure. Arch Intern Med. 1982;142(4):819–22.

    Article  CAS  PubMed  Google Scholar 

  20. Zipes DP, Libby P, Bonow RO, Mann DL, Tomaselli GF, Braunwald E. Braunwald's heart disease : a textbook of cardiovascular medicine. Eleventh edition. ed. Philadelphia, PA: Elsevier; 2019. 2 volumes (xxviii, 1944, DI-4, I-64 pages).

  21. Chirinos JA. Ventricular-arterial coupling: invasive and non-invasive assessment. Artery Res. 2013;7(1).

  22. Westerhof N, Lankhaar JW, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput. 2009;47(2):131–41.

    Article  PubMed  Google Scholar 

  23. Briand M, Dumesnil JG, Kadem L, Tongue AG, Rieu R, Garcia D, et al. Reduced systemic arterial compliance impacts significantly on left ventricular afterload and function in aortic stenosis: implications for diagnosis and treatment. J Am Coll Cardiol. 2005;46(2):291–8.

    Article  PubMed  Google Scholar 

  24. Kolh P, Ghuysen A, Tchana-Sato V, D’Orio V, Gerard P, Morimont P, et al. Effects of increased afterload on left ventricular performance and mechanical efficiency are not baroreflex-mediated. Eur J Cardiothorac Surg. 2003;24(6):912–9.

    Article  PubMed  Google Scholar 

  25. Morici N, Marini C, Sacco A, Tavazzi G, Saia F, Palazzini M, et al. Intra-aortic balloon pump for acute-on-chronic heart failure complicated by cardiogenic shock. J Card Fail. 2022;28(7):1202–16.

    Article  PubMed  Google Scholar 

  26. Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS, et al. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992;86(2):513–21.

    Article  CAS  PubMed  Google Scholar 

  27. Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973;32(3):314–22.

    Article  CAS  PubMed  Google Scholar 

  28. Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35(1):117–26.

    Article  CAS  PubMed  Google Scholar 

  29. Burkhoff D. Pressure-volume loops in clinical research: a contemporary view. J Am Coll Cardiol. 2013;62(13):1173–6.

    Article  PubMed  Google Scholar 

  30. MongeGarcía MI, Santos A. Understanding ventriculo-arterial coupling. Ann Transl Med. 2020;8(12):795.

    Article  Google Scholar 

  31. Chirinos JA, Sweitzer N. Ventricular-arterial coupling in chronic heart failure. Card Fail Rev. 2017;3(1):12–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Viau DM, Sala-Mercado JA, Spranger MD, O’Leary DS, Levy PD. The pathophysiology of hypertensive acute heart failure. Heart. 2015;101(23):1861–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107(5):714–20.

    Article  PubMed  Google Scholar 

  34. Nitenberg A, Antony I, Loiseau A. Left ventricular contractile performance, ventriculoarterial coupling, and left ventricular efficiency in hypertensive patients with left ventricular hypertrophy. Am J Hypertens. 1998;11(10):1188–98.

    Article  CAS  PubMed  Google Scholar 

  35. Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Heart Fail Clin. 2008;4(1):23–36.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chantler PD, Lakatta EG, Najjar SS. Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol (1985). 2008;105(4):1342–51.

    Article  PubMed  Google Scholar 

  37. Gheorghiade M, De Luca L, Fonarow GC, Filippatos G, Metra M, Francis GS. Pathophysiologic targets in the early phase of acute heart failure syndromes. Am J Cardiol. 2005;96(6A):11G-G17.

    Article  PubMed  Google Scholar 

  38. Bastos MB, Burkhoff D, Maly J, Daemen J, den Uil CA, Ameloot K, et al. Invasive left ventricle pressure-volume analysis: overview and practical clinical implications. Eur Heart J. 2020;41(12):1286–97.

    Article  PubMed  Google Scholar 

  39. Tran P, Joshi M, Banerjee P. Concept of myocardial fatigue in reversible severe left ventricular systolic dysfunction from afterload mismatch: a case series. European Heart Journal - Case Reports. 2021;5(3).

  40. Chen CH, Fetics B, Nevo E, Rochitte CE, Chiou KR, Ding PA, et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol. 2001;38(7):2028–34.

    Article  CAS  PubMed  Google Scholar 

  41. Kiuchi S, Ikeda T. Importance of vascular function in patients with heart failure with preserved ejection fraction. Med Res Arch. 2022;10(5).

  42. Ali D, Tran P, Weight N, Ennis S, Weickert M, Miller M, et al. Heart failure with preserved ejection fraction (HFpEF) pathophysiology study (IDENTIFY-HF): rise in arterial stiffness associates with HFpEF with increase in comorbidities. Eur Heart J. 2021;42(Supplement_1).

  43. Ali D, Callan N, Ennis S, Powell R, McGuire S, McGregor G, et al. Heart failure with preserved ejection fraction (HFpEF) pathophysiology study (IDENTIFY-HF): does increased arterial stiffness associate with HFpEF, in addition to ageing and vascular effects of comorbidities? Rationale and design. BMJ Open. 2019;9(11):e027984.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Olver TD, Edwards JC, Jurrissen TJ, Veteto AB, Jones JL, Gao C, et al. Western diet-fed, aortic-banded Ossabaw Swine: a preclinical model of cardio-metabolic heart failure. JACC Basic Transl Sci. 2019;4(3):404–21.

    Article  PubMed  PubMed Central  Google Scholar 

  45. O’Rourke MF. Basic concepts for the understanding of large arteries in hypertension. J Cardiovasc Pharmacol. 1985;7(Suppl 2):S14-21.

    Article  PubMed  Google Scholar 

  46. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30(3):445–8.

    Article  PubMed  Google Scholar 

  47. Jin L, Chen J, Zhang M, Sha L, Cao M, Tong L, et al. Relationship of arterial stiffness and central hemodynamics with cardiovascular risk in hypertension. Am J Hypertens. 2023.

  48. Briet M, Boutouyrie P, Laurent S, London GM. Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int. 2012;82(4):388–400.

    Article  PubMed  Google Scholar 

  49. Boutouyrie P, Chowienczyk P, Humphrey JD, Mitchell GF. Arterial stiffness and cardiovascular risk in hypertension. Circ Res. 2021;128(7):864–86.

    Article  CAS  PubMed  Google Scholar 

  50. Hundley WG, Kitzman DW, Morgan TM, Hamilton CA, Darty SN, Stewart KP, et al. Cardiac cycle-dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance. J Am Coll Cardiol. 2001;38(3):796–802.

    Article  CAS  PubMed  Google Scholar 

  51. Bonapace S, Rossi A, Cicoira M, Franceschini L, Golia G, Zanolla L, et al. Aortic distensibility independently affects exercise tolerance in patients with dilated cardiomyopathy. Circulation. 2003;107(12):1603–8.

    Article  PubMed  Google Scholar 

  52. Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 2002;39(1):10–5.

    Article  CAS  PubMed  Google Scholar 

  53. Meguro T, Nagatomo Y, Nagae A, Seki C, Kondou N, Shibata M, et al. Elevated arterial stiffness evaluated by brachial-ankle pulse wave velocity is deleterious for the prognosis of patients with heart failure. Circ J. 2009;73(4):673–80.

    Article  PubMed  Google Scholar 

  54. Ikonomidis I. The role of aortic elastic properties in prognosis of patients with acute heart failure. Am J Hypertens. 2011;24(7):737–8.

    Article  PubMed  Google Scholar 

  55. Fujiwara K, Shimada K, Nishitani-Yokoyama M, Kunimoto M, Matsubara T, Matsumori R, et al. Arterial stiffness index and exercise tolerance in patients undergoing cardiac rehabilitation. Int Heart J. 2021;62(2):230–7.

    Article  PubMed  Google Scholar 

  56. Kallistratos E, Tsinivizov P, Kalogeris A, Poulimenos LE, Latsou D, Andriopoulou M, et al. Correlation of pulse wave velocity with functional capacity in healthy subjects and well controlled hypertensive patients. J Hypertens. 2019;37:e41.

    Article  Google Scholar 

  57. Denardo SJ, Nandyala R, Freeman GL, Pierce GL, Nichols WW. Pulse wave analysis of the aortic pressure waveform in severe left ventricular systolic dysfunction. Circ Heart Fail. 2010;3(1):149–56.

    Article  PubMed  Google Scholar 

  58. Fehérvári L SI, Kocsis L, Frigy A. Evaluation of arterial stiffness in systolic heart failure. amm [Internet]. 2Mar.2021 [cited 13Feb.2023];67(2). Available from: https://ojs.actamedicamarisiensis.ro/index.php/amm/article/view/50.

  59. Hainsworth R. Vascular capacitance: its control and importance. Rev Physiol Biochem Pharmacol. 1986;105:101–73.

    Article  CAS  PubMed  Google Scholar 

  60. Tansey EA, Montgomery LEA, Quinn JG, Roe SM, Johnson CD. Understanding basic vein physiology and venous blood pressure through simple physical assessments. Adv Physiol Educ. 2019;43(3):423–9.

    Article  PubMed  Google Scholar 

  61. Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35(1):123–9.

    Article  CAS  PubMed  Google Scholar 

  62. Beard DA, Feigl EO. Understanding Guyton’s venous return curves. Am J Physiol Heart Circ Physiol. 2011;301(3):H629–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Henderson WR, Griesdale DE, Walley KR, Sheel AW. Clinical review: Guyton—the role of mean circulatory filling pressure and right atrial pressure in controlling cardiac output. Crit Care. 2010;14(6):243.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Harms MP, Wesseling KH, Pott F, Jenstrup M, Van Goudoever J, Secher NH, et al. Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress. Clin Sci (Lond). 1999;97(3):291–301.

    Article  CAS  PubMed  Google Scholar 

  65. Stepniakowski K, Egan BM. Additive effects of obesity and hypertension to limit venous volume. Am J Physiol. 1995;268(2 Pt 2):R562–8.

    CAS  PubMed  Google Scholar 

  66. Hsu S. Coupling right ventricular-pulmonary arterial research to the pulmonary hypertension patient bedside. Circ Heart Fail. 2019;12(1):e005715.

    Article  PubMed  Google Scholar 

  67. Price LC, Wort SJ, Finney SJ, Marino PS, Brett SJ. Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emerging options for management: a systematic literature review. Crit Care. 2010;14(5):R169.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gheorghiade M, Zannad F, Sopko G, Klein L, Piña IL, Konstam MA, et al. Acute heart failure syndromes: current state and framework for future research. Circulation. 2005;112(25):3958–68.

    Article  PubMed  Google Scholar 

  69. Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail. 2021;23(3):352–80.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The editors would like to thank Dr. Martijn Hoes for taking the time to handle the review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mithilesh Joshi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights 

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Take Home Messages

1. Functional causes of heart failure can be driven by a mismatch in ventricular-arterial stiffness, resulting in increased myocardial wall stress, oxygen demand and energetic inefficiency.

2. Prompt reversal of this ventricular-arterial mismatch may lead to an improvement in left ventricular contractility and relaxation, regardless of ejection fraction.

3. Heart failure with preserved ejection fraction is usually associated with increased arterial stiffness as reflected by a higher amplitude of early systolic wave reflections and increased pulse wave velocity, imposing a greater afterload on the stressed ventricle.

4. In a load-sensitive left ventricle with reduced compliance, modest increases in preload (e.g. from venoconstriction) and afterload (e.g. during exercise or stress) can lead to marked increases in left ventricular end-diastolic pressure and, in turn, fluid congestion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, M., Tran, P., Barber, T.M. et al. The Role of the Vasculature in Heart Failure. Curr Heart Fail Rep 20, 179–190 (2023). https://doi.org/10.1007/s11897-023-00602-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-023-00602-4

Keywords

Navigation