Skip to main content
Log in

Pulmonary Hypertension in Advanced Heart Failure: Assessment and Management of the Failing RV and LV

  • Updates in Advanced Heart Failure (E. Rame and M. St. John Sutton, Section Editors)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In patients with heart failure with reduced ejection fraction, the presence of pulmonary hypertension (PH-LHD) has a significant impact on their prognosis. The purpose of this review is to explain the methods of diagnosing PH-LHD and then discuss the available therapeutic options.

Recent Findings

We begin by examining the methods of assessment of PH-LHD—echocardiography, cardiopulmonary exercise testing, and right heart catheterization—with a particular focus on the importance of accurate measurement to ensure the proper determination of PH-LHD. We then focus primarily on management of PH-LHD, with an examination of trials of therapeutic options, use of mechanical circulatory support, and transplantation.

Summary

This review highlights the complexities in diagnosis and management of PH-LHD. We outline a number of useful ways to maximize the yield of diagnostic testing, as well as give suggestions on the use of medical therapies, the role of both temporary mechanical support and left ventricular assist device, and finally the ways to best bridge these patients to transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Guazzi M, Borlaug BA. Pulmonary hypertension due to left heart disease. Circulation. 2012;126(8):975–90. https://doi.org/10.1161/CIRCULATIONAHA.111.085761.

    Article  PubMed  Google Scholar 

  2. •• Galiè N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119. https://doi.org/10.1093/eurheartj/ehv317. An excellent summary of pulmonary hypertension with recent guideline recommendations.

    Article  Google Scholar 

  3. Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, Williams PG, Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019;53.

  4. Rosenkranz S, Gibbs JSR, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiéry J-L. Left ventricular heart failure and pulmonary hypertension. Eur Heart J. 2016;37(12):942–54. https://doi.org/10.1093/eurheartj/ehv512.

    Article  PubMed  Google Scholar 

  5. Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37(1):183–8. https://doi.org/10.1016/S0735-1097(00)01102-5.

    Article  CAS  PubMed  Google Scholar 

  6. Miller WL, Grill DE, Borlaug BA. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction: Pulmonary Hypertension and Heart Failure. JACC Heart Fail. 2013;1(4):290–9. https://doi.org/10.1016/j.jchf.2013.05.001.

    Article  PubMed  Google Scholar 

  7. Tampakakis E, Leary PJ, Selby VN, de Marco T, Cappola TP, Felker GM, et al. The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease. JACC Heart Fail. 2015;3(1):9–16. https://doi.org/10.1016/j.jchf.2014.07.010.

    Article  PubMed  Google Scholar 

  8. Miller WL, Mahoney DW, Enriquez-Sarano M. Quantitative Doppler-echocardiographic imaging and clinical outcomes with left ventricular systolic dysfunction. Circ Cardiovasc Imaging. 2014;7(2):330–6. https://doi.org/10.1161/CIRCIMAGING.113.001184.

    Article  CAS  PubMed  Google Scholar 

  9. Salamon JN, Kelesidis I, Msaouel P, Mazurek JA, Mannem S, Adzic A, et al. Outcomes in World Health Organization group II pulmonary hypertension: mortality and readmission trends with systolic and preserved ejection fraction–induced pulmonary hypertension. J Card Fail. 2014;20(7):467–75. https://doi.org/10.1016/j.cardfail.2014.05.003.

    Article  PubMed  Google Scholar 

  10. Adusumalli S, Mazurek JA. Pulmonary hypertension due to left ventricular cardiomyopathy: is it the result or cause of disease progression? Curr Heart Fail Rep. 2017;14(6):507–13. https://doi.org/10.1007/s11897-017-0368-2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sparrow CT, LaRue SJ, Schilling JD. Intersection of pulmonary hypertension and right ventricular dysfunction in patients on left ventricular assist device support: is there a role for pulmonary vasodilators? Circ Heart Fail. 2018;11(1):e004255. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004255.

    Article  PubMed  Google Scholar 

  12. Opotowsky AR, Clair M, Afilalo J, Landzberg MJ, Waxman AB, Moko L, et al. A simple echocardiographic method to estimate pulmonary vascular resistance. Am J Cardiol. 2013;112(6):873–82. https://doi.org/10.1016/j.amjcard.2013.05.016.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Forfia PR, Vachiéry J-L. Echocardiography in pulmonary arterial hypertension. Am J Cardiol. 2012;110(6, Supplement):S16–24. https://doi.org/10.1016/j.amjcard.2012.06.012.

    Article  Google Scholar 

  14. Mazurek JA, Forfia PR. Enhancing the accuracy of echocardiography in the diagnosis of pulmonary arterial hypertension: looking at the heart to learn about the lungs. Curr Opin Pulm Med. 2013;19(5):437–45. https://doi.org/10.1097/MCP.0b013e3283645966.

    Article  PubMed  Google Scholar 

  15. Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr. 2007;20(7):857–61. https://doi.org/10.1016/j.echo.2007.01.005.

    Article  PubMed  Google Scholar 

  16. Beigel R, Cercek B, Luo H, Siegel RJ. Noninvasive evaluation of right atrial pressure. J Am Soc Echocardiogr. 2013;26(9):1033–42. https://doi.org/10.1016/j.echo.2013.06.004.

    Article  PubMed  Google Scholar 

  17. Do DH, Therrien J, Marelli A, Martucci G, Afilalo J, Sebag IA. Right atrial size relates to right ventricular end-diastolic pressure in an adult population with congenital heart disease. Echocardiography. 2011;28(1):109–16. https://doi.org/10.1111/j.1540-8175.2010.01277.x.

    Article  Google Scholar 

  18. Sundereswaran L, Nagueh SF, Vardan S, Middleton KJ, Zoghbi WA, Quiñones MA, et al. Estimation of left and right ventricular filling pressures after heart transplantation by tissue Doppler imaging. Am J Cardiol. 1998;82(3):352–7.

    Article  CAS  Google Scholar 

  19. Sade LE, Gulmez O, Eroglu S, Sezgin A, Muderrisoglu H. Noninvasive estimation of right ventricular filling pressure by ratio of early tricuspid inflow to annular diastolic velocity in patients with and without recent cardiac surgery. J Am Soc Echocardiogr. 2007;20(8):982–8. https://doi.org/10.1016/j.echo.2007.01.012.

    Article  PubMed  Google Scholar 

  20. Amsallem M, Sternbach JM, Adigopula S, Kobayashi Y, Vu TA, Zamanian R, et al. Addressing the controversy of estimating pulmonary arterial pressure by echocardiography. J Am Soc Echocardiogr. 2016;29(2):93–102. https://doi.org/10.1016/j.echo.2015.11.001.

    Article  PubMed  Google Scholar 

  21. Arkles JS, Opotowsky AR, Ojeda J, Rogers F, Liu T, Prassana V, et al. Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med. 2011;183(2):268–76. https://doi.org/10.1164/rccm.201004-0601OC.

    Article  Google Scholar 

  22. Takahama H, McCully RB, Frantz RP, Kane GC. Unraveling the RV ejection Doppler envelope: insight into pulmonary artery hemodynamics and disease severity. JACC Cardiovasc Imaging. 2017;10(10, Part B):1268–77. https://doi.org/10.1016/j.jcmg.2016.12.021.

    Article  PubMed  Google Scholar 

  23. Guazzi M, Naeije R, Arena R, Corrà U, Ghio S, Forfia P, et al. Echocardiography of right ventriculoarterial coupling combined with cardiopulmonary exercise testing to predict outcome in heart failure. Chest. 2015;148(1):226–34. https://doi.org/10.1378/chest.14-2065.

    Article  PubMed  Google Scholar 

  24. Guazzi M, Bandera F, Pelissero G, Castelvecchio S, Menicanti L, Ghio S, et al. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. Am J Physiol Heart Circ Physiol. 2013;305(9):H1373–81. https://doi.org/10.1152/ajpheart.00157.2013.

    Article  CAS  PubMed  Google Scholar 

  25. Bhattacharya PT, Troutman GS, Mao F, Fox AL, Tanna MS, Zamani P, Grandin EW, Menachem JN, Birati EY, Chirinos JA, Mazimba S, Smith KA, Kawut SM, Forfia PR, Vaidya A, Mazurek JA. Right ventricular outflow tract velocity time integral-to-pulmonary artery systolic pressure ratio: a non-invasive metric of pulmonary arterial compliance differs across the spectrum of pulmonary hypertension. Pulm Circ. 2019 Apr-Jun;9(2):2045894019841978.

  26. Guazzi M, Adams V, Conraads V, Halle M, Mezzani A, Vanhees L, et al. EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2012;126(18):2261–74. https://doi.org/10.1161/CIR.0b013e31826fb946.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, et al. ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation. 2002;106(14):1883–92.

    Article  Google Scholar 

  28. Butler J, Chomsky DB, Wilson JR. Pulmonary hypertension and exercise intolerance in patients with heart failure. J Am Coll Cardiol. 1999;34(6):1802–6. https://doi.org/10.1016/S0735-1097(99)00408-8.

    Article  CAS  PubMed  Google Scholar 

  29. Arena R, Lavie CJ, Milani RV, Myers J, Guazzi M. Cardiopulmonary exercise testing in patients with pulmonary arterial hypertension: an evidence-based review. J Heart Lung Transplant. 2010;29(2):159–73. https://doi.org/10.1016/j.healun.2009.09.003.

    Article  PubMed  Google Scholar 

  30. Methvin AB, Owens AT, Emmi AG, Allen M, Wiegers SE, Dries DL, et al. Ventilatory inefficiency reflects right ventricular dysfunction in systolic heart failure. Chest. 2011;139(3):617–25. https://doi.org/10.1378/chest.10-0318.

    Article  PubMed  Google Scholar 

  31. Kovacs G, Avian A, Pienn M, Naeije R, Olschewski H. Reading pulmonary vascular pressure tracings. How to handle the problems of zero leveling and respiratory swings. Am J Respir Crit Care Med. 2014;190(3):252–7. https://doi.org/10.1164/rccm.201402-0269PP.

    Article  PubMed  Google Scholar 

  32. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D42–50. https://doi.org/10.1016/j.jacc.2013.10.032.

    Article  PubMed  Google Scholar 

  33. Robbins IM, Hemnes AR, Pugh ME, Brittain EL, Zhao DX, Piana RN, et al. High prevalence of occult pulmonary venous hypertension revealed by fluid challenge in pulmonary hypertension. Circ Heart Fail. 2014;7(1):116–22. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000468.

    Article  PubMed  Google Scholar 

  34. Maron BA, Cockrill BA, Waxman AB, Systrom DM. The invasive cardiopulmonary exercise test. Circulation. 2013;127(10):1157–64. https://doi.org/10.1161/CIRCULATIONAHA.112.104463.

    Article  PubMed  Google Scholar 

  35. Costard-Jäckle A, Fowler MB. Influence of preoperative pulmonary artery pressure on mortality after heart transplantation: testing of potential reversibility of pulmonary hypertension with nitroprusside is useful in defining a high risk group. J Am Coll Cardiol. 1992;19(1):48–54. https://doi.org/10.1016/0735-1097(92)90050-W.

    Article  PubMed  Google Scholar 

  36. Ichinose F, Roberts JD, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation. 2004;109(25):3106–11. https://doi.org/10.1161/01.CIR.0000134595.80170.62.

    Article  PubMed  Google Scholar 

  37. Givertz MM, Hare JM, Loh E, Gauthier DF, Colucci WS. Effect of bolus milrinone on hemodynamic variables and pulmonary vascular resistance in patients with severe left ventricular dysfunction: a rapid test for reversibility of pulmonary hypertension. J Am Coll Cardiol. 1996;28(7):1775–80. https://doi.org/10.1016/S0735-1097(96)00399-3.

    Article  CAS  PubMed  Google Scholar 

  38. Murali S, Uretsky BF, Armitage JM, et al. Utility of prostaglandin E1 in the pretransplantation evaluation of heart failure patients with significant pulmonary hypertension. J Heart Lung Transplant. 1992;11(4 Pt 1):716–23.

    CAS  PubMed  Google Scholar 

  39. Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658–66. https://doi.org/10.1016/S0140-6736(11)60101-3.

    Article  PubMed  Google Scholar 

  40. Hemodynamic-GUIDEd Management of Heart Failure—full-text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03387813. Accessed 29 Nov 2018.

  41. Botha P, Parry G, Dark JH, MacGowan GA. Acute hemodynamic effects of intravenous sildenafil citrate in congestive heart failure: comparison of phosphodiesterase type-3 and -5 inhibition. J Heart Lung Transplant. 2009;28(7):676–82. https://doi.org/10.1016/j.healun.2009.04.013.

    Article  PubMed  Google Scholar 

  42. Farber HW, Loscalzo J. Pulmonary arterial hypertension. N Engl J Med. 2004;351(16):1655–65. https://doi.org/10.1056/NEJMra035488.

    Article  CAS  PubMed  Google Scholar 

  43. Califf RM, Adams KF, McKenna WJ, et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: the Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1997;134(1):44–54.

    Article  CAS  Google Scholar 

  44. Anand I, McMurray J, Cohn JN, Konstam MA, Notter T, Quitzau K, et al. Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the EndothelinA Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet. 2004;364(9431):347–54. https://doi.org/10.1016/S0140-6736(04)16723-8.

    Article  CAS  PubMed  Google Scholar 

  45. Bursi F, McNallan SM, Redfield MM, et al. Pulmonary pressures and death in heart failure: a community study. J Am Coll Cardiol. 2012;59(3):222–31. https://doi.org/10.1016/j.jacc.2011.06.076.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lewis GD, Lachmann J, Camuso J, Lepore JJ, Shin J, Martinovic ME, et al. Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation. 2007;115(1):59–66. https://doi.org/10.1161/CIRCULATIONAHA.106.626226.

    Article  CAS  PubMed  Google Scholar 

  47. Phosphodiesterase type 5 inhibition with tadalafil changes outcomes in heart failure—full-text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01910389. Accessed 29 Nov 2018.

  48. Guazzi M, Samaja M, Arena R, Vicenzi M, Guazzi MD. Long-term use of sildenafil in the therapeutic management of heart failure. J Am Coll Cardiol. 2007;50(22):2136–44. https://doi.org/10.1016/j.jacc.2007.07.078.

    Article  CAS  PubMed  Google Scholar 

  49. Guazzi M, Vicenzi M, Arena R, Guazzi MD. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011;4(1):8–17. https://doi.org/10.1161/CIRCHEARTFAILURE.110.944694.

    Article  CAS  PubMed  Google Scholar 

  50. Lüscher TF, Enseleit F, Pacher R, et al. Hemodynamic and neurohumoral effects of selective endothelin A (ET(A)) receptor blockade in chronic heart failure: the Heart Failure ET(A) Receptor Blockade Trial (HEAT). Circulation. 2002;106(21):2666–72.

    Article  Google Scholar 

  51. Sildenafil versus placebo in chronic heart failure—full-text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01616381. Accessed 29 Nov 2018.

  52. Packer M, McMurray JJV, Krum H, et al. Long-term effect of endothelin receptor antagonism with bosentan on the morbidity and mortality of patients with severe chronic heart failure: Primary Results of the ENABLE Trials. JACC Heart Fail. 2017;5(5):317–26. https://doi.org/10.1016/j.jchf.2017.02.021.

    Article  PubMed  Google Scholar 

  53. Packer M, McMurray J, Massie BM, Caspi A, Charlon V, Cohen-Solal A, et al. Clinical effects of endothelin receptor antagonism with bosentan in patients with severe chronic heart failure: results of a pilot study. J Card Fail. 2005;11(1):12–20.

    Article  CAS  Google Scholar 

  54. Bonderman D, Ghio S, Felix Stephan B, et al. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction. Circulation. 2013;128(5):502–11. https://doi.org/10.1161/CIRCULATIONAHA.113.001458.

    Article  CAS  PubMed  Google Scholar 

  55. Vachiéry J-L, Delcroix M, Al-Hiti H, et al. Macitentan in pulmonary hypertension due to left ventricular dysfunction. Eur Respir J. 2018;51(2):1701886. https://doi.org/10.1183/13993003.01886-2017.

    Article  CAS  PubMed  Google Scholar 

  56. • Kapur Navin K, Esposito Michele L, Yousef B, et al. Mechanical circulatory support devices for acute right ventricular failure. Circulation. 2017;136(3):314–26. https://doi.org/10.1161/CIRCULATIONAHA.116.025290. A concise and recently published in-depth review on mechanical support options for right ventricular failure in general.

    Article  Google Scholar 

  57. Ro SK, Kim JB, Jung SH, Choo SJ, Chung CH, Lee JW. Extracorporeal life support for cardiogenic shock: influence of concomitant intra-aortic balloon counterpulsation. Eur J Cardiothorac Surg. 2014;46(2):186–92; discussion 192. https://doi.org/10.1093/ejcts/ezu005.

    Article  PubMed  Google Scholar 

  58. Koeckert MS, Jorde UP, Naka Y, Moses JW, Takayama H. Impella LP 2.5 for left ventricular unloading during venoarterial extracorporeal membrane oxygenation support. J Card Surg. 2011;26(6):666–8. https://doi.org/10.1111/j.1540-8191.2011.01338.x.

    Article  PubMed  Google Scholar 

  59. Kang M-H, Hahn J-Y, Gwon H-C, Song YB, Choi JO, Choi JH, et al. Percutaneous transseptal left atrial drainage for decompression of the left heart in an adult patient during percutaneous cardiopulmonary support. Korean Circ J. 2011;41(7):402–4. https://doi.org/10.4070/kcj.2011.41.7.402.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fumagalli R, Bombino M, Borelli M, Rossi F, Colombo V, Osculati G, et al. Percutaneous bridge to heart transplantation by venoarterial ECMO and transaortic left ventricular venting. Int J Artif Organs. 2004;27(5):410–3.

    Article  CAS  Google Scholar 

  61. Miller LW, Rogers JG. Evolution of left ventricular assist device therapy for advanced heart failure: a review. JAMA Cardiol. 2018;3(7):650–8. https://doi.org/10.1001/jamacardio.2018.0522.

    Article  PubMed  Google Scholar 

  62. Selby VN, Teuteberg JJ, Allen IE, Tedford RJ, Kormos RL, Marco TD. Characterization and impact of pulmonary hypertension on outcomes after left ventricular assist device implantation. J Heart Lung Transplant. 2015;34(4):S142. https://doi.org/10.1016/j.healun.2015.01.384.

    Article  Google Scholar 

  63. Houston BA, Kalathiya RJ, Hsu S, Loungani R, Davis ME, Coffin ST, et al. Right ventricular afterload sensitivity dramatically increases after left ventricular assist device implantation: a multi-center hemodynamic analysis. J Heart Lung Transplant. 2016;35(7):868–76. https://doi.org/10.1016/j.healun.2016.01.1225.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Grandin EW, Zamani P, Mazurek JA, Troutman GS, Birati EY, Vorovich E, et al. Right ventricular response to pulsatile load is associated with early right heart failure and mortality after left ventricular assist device. J Heart Lung Transplant. 2017;36(1):97–105. https://doi.org/10.1016/j.healun.2016.06.015.

    Article  PubMed  Google Scholar 

  65. Kalogeropoulos AP, Kelkar A, Weinberger JF, Morris AA, Georgiopoulou VV, Markham DW, et al. Validation of clinical scores for right ventricular failure prediction after implantation of continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34(12):1595–603. https://doi.org/10.1016/j.healun.2015.05.005.

    Article  PubMed  Google Scholar 

  66. Torre-Amione G, Southard RE, Loebe MM, Youker KA, Bruckner B, Estep JD, et al. Reversal of secondary pulmonary hypertension by axial and pulsatile mechanical circulatory support. J Heart Lung Transplant. 2010;29(2):195–200. https://doi.org/10.1016/j.healun.2009.05.030.

    Article  PubMed  Google Scholar 

  67. Mikus E, Stepanenko A, Krabatsch T, Loforte A, Dandel M, Lehmkuhl HB, et al. Reversibility of fixed pulmonary hypertension in left ventricular assist device support recipients. Eur J Cardiothorac Surg. 2011;40(4):971–7. https://doi.org/10.1016/j.ejcts.2011.01.019.

    Article  PubMed  Google Scholar 

  68. Beyersdorf F, Schlensak C, Berchtold-Herz M, Trummer G. Regression of “fixed” pulmonary vascular resistance in heart transplant candidates after unloading with ventricular assist devices. J Thorac Cardiovasc Surg. 2010;140(4):747–9. https://doi.org/10.1016/j.jtcvs.2010.05.042.

    Article  PubMed  Google Scholar 

  69. Kumarasinghe G, Jain P, Jabbour A, Lai J, Keogh AM, Kotlyar E, et al. Comparison of continuous-flow ventricular assist device therapy with intensive medical therapy in fixed pulmonary hypertension secondary to advanced left heart failure. ESC Heart Fail. 2018;5(4):695–702. https://doi.org/10.1002/ehf2.12284.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tsukashita M, Takayama H, Takeda K, Han J, Colombo PC, Yuzefpolskaya M, et al. Effect of pulmonary vascular resistance before left ventricular assist device implantation on short- and long-term post-transplant survival. J Thorac Cardiovasc Surg. 2015;150(5):1352–60, 1361.e1-2. https://doi.org/10.1016/j.jtcvs.2015.07.012.

    Article  PubMed  Google Scholar 

  71. Imamura T, Chung B, Nguyen A, Rodgers D, Sayer G, Adatya S, et al. Decoupling between diastolic pulmonary artery pressure and pulmonary capillary wedge pressure as a prognostic factor after continuous flow ventricular assist device implantation. Circ Heart Fail. 2017;10(9). https://doi.org/10.1161/CIRCHEARTFAILURE.117.003882.

  72. Imamura T, Kim G, Raikhelkar J, Sarswat N, Kalantari S, Smith B, et al. Decoupling between diastolic pulmonary arterial pressure and pulmonary arterial wedge pressure at incremental left ventricular assist device (LVAD) speeds is associated with worse prognosis after LVAD implantation. J Card Fail. 2018;24(9):575–82. https://doi.org/10.1016/j.cardfail.2018.08.003.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Haglund NA, Burdorf A, Jones T, Shostrom V, Um J, Ryan T, et al. Inhaled milrinone after left ventricular assist device implantation. J Card Fail. 2015;21(10):792–7. https://doi.org/10.1016/j.cardfail.2015.04.011.

    Article  CAS  PubMed  Google Scholar 

  74. Argenziano M, Choudhri AF, Moazami N, et al. Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg. 1998;65(2):340–5.

    Article  CAS  Google Scholar 

  75. Potapov E, Meyer D, Swaminathan M, Ramsay M, el Banayosy A, Diehl C, et al. Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial. J Heart Lung Transplant. 2011;30(8):870–8. https://doi.org/10.1016/j.healun.2011.03.005.

    Article  PubMed  Google Scholar 

  76. Tedford RJ, Hemnes AR, Russell SD, Wittstein IS, Mahmud M, Zaiman AL, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1(4):213–9. https://doi.org/10.1161/CIRCHEARTFAILURE.108.796789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87. https://doi.org/10.1016/j.healun.2012.09.013.

    Article  PubMed  Google Scholar 

  78. LaRue SJ, Garcia-Cortes R, Nassif ME, et al. Treatment of secondary pulmonary hypertension with bosentan after left ventricular assist device implantation. Cardiovasc Ther. 2015;33(2):50–5. https://doi.org/10.1111/1755-5922.12111.

    Article  CAS  PubMed  Google Scholar 

  79. Clinical study to assess the efficacy and safety of macitentan in patients with pulmonary hypertension after left ventricular assist device implantation—full-text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02554903. Accessed 29 Nov 2018.

  80. Shehab S, Macdonald PS, Keogh AM, Kotlyar E, Jabbour A, Robson D, et al. Long-term biventricular HeartWare ventricular assist device support—case series of right atrial and right ventricular implantation outcomes. J Heart Lung Transplant. 2016;35(4):466–73. https://doi.org/10.1016/j.healun.2015.12.001.

    Article  PubMed  Google Scholar 

  81. Tran HA, Pollema TL, Silva Enciso J, Greenberg BH, Barnard DD, Adler ED, et al. Durable biventricular support using right atrial placement of the HeartWare HVAD. ASAIO J. 2018;64(3):323–7. https://doi.org/10.1097/MAT.0000000000000645.

    Article  PubMed  Google Scholar 

  82. Lavee J, Mulzer J, Krabatsch T, Marasco S, McGiffin D, Garbade J, et al. An international multicenter experience of biventricular support with HeartMate 3 ventricular assist systems. J Heart Lung Transplant. 2018;37(12):1399–402. https://doi.org/10.1016/j.healun.2018.08.008.

    Article  PubMed  Google Scholar 

  83. Kobashigawa J, Zuckermann A, Macdonald P, Leprince P, Esmailian F, Luu M, et al. Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J Heart Lung Transplant. 2014;33(4):327–40. https://doi.org/10.1016/j.healun.2014.02.027.

    Article  PubMed  Google Scholar 

  84. Jessup M, Banner N, Brozena S, Campana C, Costard-Jäckle A, Dengler T, et al. Optimal pharmacologic and non-pharmacologic management of cardiac transplant candidates: approaches to be considered prior to transplant evaluation: International Society for Heart and Lung Transplantation Guidelines for the Care of Cardiac Transplant Candidates—2006. J Heart Lung Transplant. 2006;25(9):1003–23. https://doi.org/10.1016/j.healun.2006.06.007.

    Article  PubMed  Google Scholar 

  85. Vakil K, Duval S, Sharma A, Adabag S, Abidi KS, Taimeh Z, et al. Impact of pre-transplant pulmonary hypertension on survival after heart transplantation: a UNOS registry analysis. Int J Cardiol. 2014;176(3):595–9. https://doi.org/10.1016/j.ijcard.2014.08.072.

    Article  PubMed  Google Scholar 

  86. De Santo LS, Buonocore M, Agrusta F, et al. Pattern of resolution of pulmonary hypertension, long-term allograft right ventricular function, and exercise capacity in high-risk heart transplant recipients listed under oral sildenafil. Clin Transpl. 2014;28(7):837–43. https://doi.org/10.1111/ctr.12387.

    Article  CAS  Google Scholar 

  87. Pons J, Leblanc M-H, Bernier M, Cantin B, Bourgault C, Bergeron S, et al. Effects of chronic sildenafil use on pulmonary hemodynamics and clinical outcomes in heart transplantation. J Heart Lung Transplant. 2012;31(12):1281–7. https://doi.org/10.1016/j.healun.2012.09.009.

    Article  PubMed  Google Scholar 

  88. Stobierska-Dzierzek B, Awad H, Michler RE. The evolving management of acute right-sided heart failure in cardiac transplant recipients. J Am Coll Cardiol. 2001;38(4):923–31. https://doi.org/10.1016/S0735-1097(01)01486-3.

    Article  CAS  PubMed  Google Scholar 

  89. Chambers DC, Cherikh WS, Goldfarb SB, Hayes D Jr, Kucheryavaya AY, Toll AE, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-fifth adult lung and heart-lung transplant report—2018; focus theme: multiorgan transplantation. J Heart Lung Transplant. 2018;37(10):1169–83. https://doi.org/10.1016/j.healun.2018.07.020.

    Article  PubMed  Google Scholar 

  90. Sildenafil in US heart failure patients (SilHF-US)—full-text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03460470. Accessed 6 Dec 2018.

  91. Pulmonary vascular disease phenomics program PVDOMICS—full-text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02980887. Accessed 6 Dec 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy A. Mazurek.

Ethics declarations

Conflict of Interest

Sriram D. Rao and Jonathan N. Menachem declare no conflict of interest. Dr. Birati reports personal fees from Luitpold Pharmaceuticals, Inc. Dr. Mazurek reports personal fees from Actelion Pharmaceuticals.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Updates in Advanced Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, S.D., Menachem, J.N., Birati, E.Y. et al. Pulmonary Hypertension in Advanced Heart Failure: Assessment and Management of the Failing RV and LV. Curr Heart Fail Rep 16, 119–129 (2019). https://doi.org/10.1007/s11897-019-00431-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-019-00431-4

Keywords

Navigation