Skip to main content

Advertisement

Log in

Constipation in Parkinson’s Disease: a Nuisance or Nuanced Answer to the Pathophysiological Puzzle?

  • Neurogastroenterology and Motility Disorders of the Gastrointestinal Tract (S Rao, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Chronic constipation is a common, nonmotor, and prodromal symptom in Parkinson’s disease (PD). Its underlying neuropathology may provide pathophysiological insight into PD. Here, we critically review what is currently known about the neuroanatomical and brain-gut interactions, and the origin and progression of Lewy pathology (LP) at three levels—brain/brainstem, spinal cord, and enteric nervous system.

Recent Findings

Many recent studies have illustrated the challenges of examining LP in tissues obtained from colon biopsies of PD patients. Large-scale epidemiological studies have not confirmed the widely accepted Braakpostula.

Summary

In this review, we propose an alternative origin and route of spread of LP in PD. We describe novel, noninvasive neurophysiological testing that could advance the understanding of LP and complex bidirectional brain-pelvic floor neural pathways in PD—a true disease model of a neurogastrointestinal disorder. This review may provide the impetus for future studies investigating gut and brain interaction and constipation in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: ••Of major importance

  1. Parkinson J. An essay on the shaking palsy. Neely and Jones, London: Sherwood; 1817.

    Google Scholar 

  2. Kaye J, Gage H, Kimbler A, et al. Escess burden of constipation in Parkinson’s disease: a pilot study. Mov Disord. 2006;21(8):1270–3. https://doi.org/10.1002/mds.20942.

    Article  PubMed  Google Scholar 

  3. Siddiqui MF, Rast S, Lynn MJ, et al. Autonomic dysfunction in Parkinson’s disease: a comprehensive symptom survey. Parkinsonism Relat Disor. 2002;8:2777–84.

    Article  Google Scholar 

  4. Postuma RB, Gagnon JF, Pelletier A, Montplaisir J. Prodromal autonomic symptoms and signs of Parkinson’s disease and dementia with Lewy bodies. Mov Disord. 2013;28(5):597–604. https://doi.org/10.1002/mds.25445.

    Article  PubMed  Google Scholar 

  5. Lin C, Lin J, Liu Y, et al. Risk of Parkinson’s disease following severe constipation: a nationwide population-based cohort study. Parkinsonism Relat Disord. 2014;20(12):1371–5. https://doi.org/10.1016/j.parkreldis.2014.09.026.

    Article  PubMed  Google Scholar 

  6. Jost WH. Gastrointestinal dysfunction in Parkinson’s disease. J Neurol Sci. 2010;289(1-2):69–73. https://doi.org/10.1016/j.jns.2009.08.020.

    Article  CAS  PubMed  Google Scholar 

  7. Gage H, Kaye J, Kimber A, Storey L, Egan M, Qiao Y, et al. Correlates of constipation in people with Parkinson’s. Parkinsonism Relat Disord. 2011;17(2):106–11. https://doi.org/10.1016/j.parkreldis.2010.11.003.

    Article  CAS  PubMed  Google Scholar 

  8. Edwards LL, Quigley EM, Harned RK, Hofman R, Pfeiffer RF. Characterization of swallowing and defecation in Parkinson’s disease. Am J Gastroenterol. 1994;89(1):15–25.

    CAS  PubMed  Google Scholar 

  9. Hall, John E (2011). “General principles of gastrointestinal function” Guyton and Hal Textbook of Medical Physiology (12th Ed.) Saunders Elsevier. p 755.

  10. Gerson MD. The enteric nervous system: a second brain. Hospital Practice (1995). 1999;34(7):31–2. 35–8,41–2

    Article  Google Scholar 

  11. Glazer EJ, Basbaum AI. Leucine encephalin: localization in and axoplasmic transport by sacral parasympathetic neurons. Science. 1980;208(4451):1479–81. https://doi.org/10.1126/science.6155697.

    Article  CAS  PubMed  Google Scholar 

  12. Kawatani M, Shioda S, Nakai Y, Takeshige C, de Groat WC. Ultrastructural analysis of enkephalinergic terminals in parasympathetic ganglia innervating the urinary bladder of the cat. J Comp Neurol. 1989;288(1):81–91. https://doi.org/10.1002/cne.902880107.

    Article  CAS  PubMed  Google Scholar 

  13. Holstege G, Tan J. Supraspinal control of motorneurons innervating the striated muscles of the pelvic floor including the urethral and anal sphincters in the cat. Brain. 1987;110(5):1323–44. https://doi.org/10.1093/brain/110.5.1323.

    Article  PubMed  Google Scholar 

  14. Mannen T. Neuropathological findings of Onuf’s nucleus and its significance. Neuropathology. 2000;20(s1):30–3. https://doi.org/10.1046/j.1440-1789.2000.00298.x.

    Article  Google Scholar 

  15. Del Tredici K, Rub U, De Vos RA, et al. Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol. 2002;61(5):413–26. https://doi.org/10.1093/jnen/61.5.413.

    Article  PubMed  Google Scholar 

  16. Cersosimo MG, Benarroch EE. Neural control of the gastrointestinal tract: implications for Parkinson disease. Mov Disord. 2008;23(8):1065–73. https://doi.org/10.1002/mds.22051.

    Article  PubMed  Google Scholar 

  17. Browning KN, Travalgi RA. Central nervous control of the gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014;4(4):1339–68. https://doi.org/10.1002/cphy.c130055.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Janig W, McLachlan EM. Organization of lumbar spinal outflow to distal colon and pelvic organs. Physiol Rev. 1987;67(4):1332–404. https://doi.org/10.1152/physrev.1987.67.4.1332.

    Article  CAS  PubMed  Google Scholar 

  19. Cookson MR, Bandmann O. Parkinson’s disease: insights from pathways. Hum Mol Genet. 2010;19:821–7.

    Article  Google Scholar 

  20. Burre J. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329(5999):1663–7. https://doi.org/10.1126/science.1195227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Braak H, Ghebremedhin E, Rub U, et al. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 2004;318(1):121–34. https://doi.org/10.1007/s00441-004-0956-9.

    Article  PubMed  Google Scholar 

  22. Del Tredici K, Braak H. Spinal cord lesions in sporadic Parkinson’s disease. Acta Neurpathol. 2012;124(5):643–64. https://doi.org/10.1007/s00401-012-1028-y.

    Article  Google Scholar 

  23. Hilton D, Stephens M, Kirk L, Edwards P, Potter R, Zajicek J, et al. Accumulation of alpha-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathol. 2014;127(2):235–41. https://doi.org/10.1007/s00401-013-1214-6.

    Article  CAS  PubMed  Google Scholar 

  24. Shannon KM, Keshavarzian A, Dodiya H, et al. Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov Disord. 2012;27(6):716–9. https://doi.org/10.1002/mds.25020.

    Article  PubMed  Google Scholar 

  25. •• Ruffman C, Parkkinen L. Gut feelings about alpha-synuclein in gastrointestinal biopsies: biomarker in the making? Mov Disord. 2016;31(2):193–202. Excellent explanation why readily source of tissue from colonic biopsies not specific enough for PD

    Article  Google Scholar 

  26. Lebouvier T, Chaumette T, Damier P, Coron E, Touchefeu Y, Vrignaud S, et al. Pathological lesions in colonic biopsies during Parkinson’s disease. Gut. 2008;57(12):1741–3. https://doi.org/10.1136/gut.2008.162503.

    Article  CAS  PubMed  Google Scholar 

  27. Lebouvier T, Neunlist M, Bruley d, Varannes S, et al. Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PLoS One. 2010;5(9):e12728. https://doi.org/10.1371/journal.pone.0012728.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pouclet H, Lebouvier T, Coron E, Bruley des Varannes S, Rouaud T, Roy M, et al. A comparison between rectal and colonic biopsies to detect Lewy pathology in Parkinson’s disease. Neurobiol Dis. 2012;45(1):305–9. https://doi.org/10.1016/j.nbd.2011.08.014.

    Article  PubMed  Google Scholar 

  29. Gold A, Turkalp ZT, Munoz DG. Enteric alpha-synuclein expression is increased in Parkinson’s disease but not Alzeimer’s disease. Mov Disord. 2013;28(2):237–40. https://doi.org/10.1002/mds.25298.

    Article  CAS  PubMed  Google Scholar 

  30. Visanji NJ, Marras C, Kern DS, et al. Colonic mucosal a-synuclein lacks specificity as biomarker for Parkinson’s disease. Neurology. 2015;84(6):609–16. https://doi.org/10.1212/WNL.0000000000001240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Braak H, de Vos RA, Boh J, et al. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain bathology. Neurosci Lett. 2006;396(1):67–72. https://doi.org/10.1016/j.neulet.2005.11.012.

    Article  CAS  PubMed  Google Scholar 

  32. Beach TG, Adler CH, Sue LI, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 2010;119(6):689–702. https://doi.org/10.1007/s00401-010-0664-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gray MT, Munoz DG, Gray DA, Schlossmacher MG, Woulfe JM. Alpha-synuclein in the appendiceal mucosa of neurologically intact subjects. Mov Disord. 2014;29(8):991–8. https://doi.org/10.1002/mds.25779.

    Article  CAS  PubMed  Google Scholar 

  34. Nakai M, Fujita M, Waragai M, Sugama S, Wei J, Akatsu H, et al. Experssion of alpha-synuclein, a presynaptic protein implicated in Parkinson’s disease, in erythropoetic lineage. Biochem Biophys Res Comm. 2007;358(1):104–10. https://doi.org/10.1016/j.bbrc.2007.04.108.

    Article  CAS  PubMed  Google Scholar 

  35. Tamo W, Imaizumi T, Tanji K, Yoshida H, Mori F, Yoshimoto M, et al. Expression of alpha-synuclein, the precursor of non-amyloid ceta component of Alzheimer’s disease amyloid, in human cerebral blood vessels. Neurosci Lett. 2002;326(1):5–8. https://doi.org/10.1016/S0304-3940(02)00297-5.

    Article  CAS  PubMed  Google Scholar 

  36. Askanas V, Engel WK, Alzarez RB, et al. Novel immunolocalization of alpha-synuclein in human muscle of inclusion-body myositis, regenerating and necrotic muscle fibers, and at neuromuscular junctions. J Neuropathol Exp Neurol. 2000;59(7):592–8. https://doi.org/10.1093/jnen/59.7.592.

    Article  CAS  PubMed  Google Scholar 

  37. Paillusson S, Clairembault T, Biraud M, Neunlist M, Derkinderen P. Activity-dependent secretion of alpha-synuclein by enteric neurons. J Neurochem. 2013;125(4):512–7. https://doi.org/10.1111/jnc.12131.

    Article  CAS  PubMed  Google Scholar 

  38. Stolzenberg E, Berry D, Yang D, Lee EY, Kroemer A, Kaufman S, et al. A role for neuronal alpha-synuclein in gastrointestinal immunity. J Innate Immun. 2017;9(5):456–63. https://doi.org/10.1159/000477990.

    Article  CAS  PubMed  Google Scholar 

  39. Wang S, Chu CH, Stewart T, Ginghina C, Wang Y, Nie H, et al. Alpha-synuclein, a chemoattractant, directs microglial activation via H2O2-dependent Lyn phosphorylation. Proc Natl Acad Sci U S A. 2015;112(15):E1926–35. https://doi.org/10.1073/pnas.1417883112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lebouvier T, Coron E, Chaumette T, Paillusson S, Bruley des Varannes S, Neunlist M, et al. Routine colonic biopsies as a new tool to study the enteric nervous system in living patients. Neurogastroenterol Motil. 2010;22(1):e11–4. https://doi.org/10.1111/j.1365-2982.2009.01368.x.

    CAS  PubMed  Google Scholar 

  41. Barshop K, Willingham FF, Brugge WR, Zukerberg LR, Kuo B. Endoscopic mucosal resection is superior to rectal suction biopsy for analysis of enteric ganglia in constipation and dysmotility. Gastrointest Endosc. 2017;S0016-5107(17):32246–0. https://doi.org/10.1016/j.gie.2017.08.037.

    Google Scholar 

  42. Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211. https://doi.org/10.1016/S0197-4580(02)00065-9.

    Article  PubMed  Google Scholar 

  43. Braak H, Rub U, Gai WP, et al. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm. 2003;110(5):517–36. https://doi.org/10.1007/s00702-002-0808-2.

    Article  CAS  PubMed  Google Scholar 

  44. Svensson E, Horvath-Pubo E, Thomsen RW, et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol. 2015;78(4):522–9. https://doi.org/10.1002/ana.24448.

    Article  PubMed  Google Scholar 

  45. Tysnes OB, Kenborg L, Herlofson K, Steding-Jessen M, Horn A, Olsen JH, et al. Does vagotomy reduce the risk of Parkinson’s disease? Ann Neurol. 2015;78(6):1011–2. https://doi.org/10.1002/ana.24531.

    Article  PubMed  Google Scholar 

  46. •• Liu B, Fang F, Pedersen NL, et al. Vagotomy and Parkinson disease. A Swedish register-based matched-cohort study. Neurology. 2017;88:1996–2002. Latest large-scale epidemiological study showing that vagotomy is not protective against the development of PD overall.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Johnston D. Operative mortality and postoperative morbidity of highly selective vagotomy. Br Med J. 1975;4(5996):545–7. https://doi.org/10.1136/bmj.4.5996.545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berg D, Postuma RB, Bloem B, Chan P, Dubois B, Gasser T, et al. Time to redefine PD? Introductory statement of the MDS Task Force on the definition of Parkinson’s disease. Mov Disord. 2014;29(4):454–62. https://doi.org/10.1002/mds.25844.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xilouri M, Brekk OR, Stefanis L. Autophagy and alpha-synuclein: relevance to Parkinson’s disease and related synucleopathies. Mov Disord. 2016;31(2):178–92. https://doi.org/10.1002/mds.26477.

    Article  CAS  PubMed  Google Scholar 

  50. Aziz Q, Thompson DG. Brain-gut axis in health and disease. Gastroenterology. 1998;114(3):559–78. https://doi.org/10.1016/S0016-5085(98)70540-2.

    Article  CAS  PubMed  Google Scholar 

  51. Hobson AR, Aziz Q. Brain imaging and functional gastrointestinal disorders: has it helped our understanding. Gut. 2004;53(8):1198–206. https://doi.org/10.1136/gut.2003.035642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. •• Remes-Troche JM, Tantiphlachiva K, Attaluri A, et al. A bi-directional assessment of the human brain-anorectal axis. Neurogastroenterol Motil. 2011;23(3):240-e118. Comprehensive description of bidirectional brain-gut neurophysiological studies that could be useful in PD.

    Article  Google Scholar 

  53. Loening-Bauke V, Read NW, Yamada T. Cerebral evoked potentials after rectal stimulation. Electroencephalogr Clin Neurophysiol. 1991;80(6):490–5. https://doi.org/10.1016/0168-5597(91)90130-P.

    Article  Google Scholar 

  54. Hobday DL, Hobson AR, Sarkar S, et al. Cortical processing of human gut sensation: an evoked potential study. Am J Physiol Gastrointest Liver Physiol. 2002;283:335–9.

    Article  Google Scholar 

  55. Drewes AM, Dimcevski G, Sami S, et al. The “human visceral homunculus” to pain evoked in the oesophagus, stomach, duodenum and sigmoid colon. Exp Brain Res. 2006;174(3):443–52. https://doi.org/10.1007/s00221-006-0480-0.

    Article  PubMed  Google Scholar 

  56. Chan YK, Herkes GK, Badcock C, Evans PR, Bennett E, Kellow JE. Alterations in cerebral potentials evoked by rectal distension in irritable bowel syndrome. Am J Gastroenterol. 2001;96(8):2413–7. https://doi.org/10.1111/j.1572-0241.2001.04088.x.

    Article  CAS  PubMed  Google Scholar 

  57. Sinhamahapatra P, Saha SP, Chowdhury A, Chakrabarti SK, Ghosh A, Maiti B. Visceral afferent hypersensitivity in irritable bowel syndrome-evaluation by cerebral evoked potential after rectal stimulation. Am J Gastroenterol. 2001;96(7):2150–7. https://doi.org/10.1111/j.1572-0241.2001.03952.x.

    CAS  PubMed  Google Scholar 

  58. Paine PA, Aziz Q, Gardener E, Hobson A, Mistry S, Thompson DG, et al. Assessing the temporal reproducibility of human esophageal motor-evoked potentials to transcranial magnetic stimulation. J Clin Neurophysiol. 2006;23(4):374–80. https://doi.org/10.1097/01.wnp.0000209578.08391.e2.

    Article  CAS  PubMed  Google Scholar 

  59. Tantiphlachiva K, Attaluri A, Valestin J, Yamada T, Rao SSC. Translumbar and transsacral motor-evoked potentials: a novel test for spino-anorectal neuropathy in spinal cord injury. Am J Gastroenterol. 2011;106(5):907–14. https://doi.org/10.1038/ajg.2010.478.

    Article  PubMed  Google Scholar 

  60. Rao SSC. Dyssynergic defecation and biofeedback therapy. Gastroenterol Clin N Am. 2008;37(3):569–86. https://doi.org/10.1016/j.gtc.2008.06.011.

    Article  Google Scholar 

  61. Ashraf W, Wazolek ZK, Pfeiffer RF, et al. Anorectal function in fluctuating (on-off) Parkinson’s disease: evaluation by combined anorectal manometry and electromyography. Mov Disord. 1995;10(5):650–7. https://doi.org/10.1002/mds.870100519.

    Article  CAS  PubMed  Google Scholar 

  62. •• Su A, Gandhy R, Barlow C, et al. Utility of high-resolution anorectal manometry and wireless motility capsule in the evaluation of patients with Parkinson’s disease and chronic constipation. BMJ Open Gastro. 2016;3(1):e000118. Recent GI transit and anorectal manometric evaluation of large cohort of PD patients

  63. Rao SSC, Valesin J, Brown CK, et al. Long-term efficacy of biofeedback therapy for dyssynergic defecation: randomized controlled trial. Am J Gastroenterol. 2010;105(4):890–6. https://doi.org/10.1038/ajg.2010.53.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tateno F, Sakakibara R, Yokoi Y, Kishi M, Ogawa E, Uchiyama T, et al. Levadopa ameliorated anorectal constipation in de novo Parkinson’s disease: the QL-GAT study. Parkinsonism Relat Disord. 2011;17(9):662–6. https://doi.org/10.1016/j.parkreldis.2011.06.002.

    Article  PubMed  Google Scholar 

  65. Edwards LL, Quigley EM, Harned RK, et al. Defecatory response to apomorphine. Ann Neurol. 1993;33(5):490–3. https://doi.org/10.1002/ana.410330512.

    Article  CAS  PubMed  Google Scholar 

  66. Albanese A, Brisinda G, Bentivoglio AR, Maria G. Treatment of outlet obstruction constipation in Parkinson’s disease with botulinum neurotoxin A. Am J Gastroenterol. 2003;98(6):1439–40. https://doi.org/10.1111/j.1572-0241.2003.07514.x.

    Article  CAS  PubMed  Google Scholar 

  67. Knudsen K, Fedorova TD, Bekker AC, Iversen P, Østergaard K, Krogh K, et al. Objective colonic dysfunction is far more prevalent than subjective constipation in Parkinson’s disease: a colonic transit and volume study. J Parkinsons Dis. 2017;7(2):359–67. https://doi.org/10.3233/JPD-161050.

    Article  PubMed  Google Scholar 

  68. Sakakibara R, Odaka T, Uchiyama T, Asahina M, Yamaguchi K, Yamaguchi T, et al. Colonic transit time and rectoanal videomanometry in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2003;74(2):268–72. https://doi.org/10.1136/jnnp.74.2.268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rao SS, Camilleri M, Hasler WL, et al. Evaluation of gastrointesinal transit in clinical practice: position paper of the American and European neurogastroenterology and motility societies. Neurogastroenterol Motil. 2011;23(1):8–25. https://doi.org/10.1111/j.1365-2982.2010.01612.x.

    Article  CAS  PubMed  Google Scholar 

  70. Su A, Gandhy R, Barlow C, Triadafilopoulos G. Utility of the wireless motility capsule and lactulose breath testing in the evaluation of patients with Parkinson’s disease who present with functional gastrointestinal symptoms. BMJ Open Gastro. 2017;4(1):e0001323. https://doi.org/10.1136/bmjgast-2017-000132.

    Article  Google Scholar 

  71. Zangaglia R, Maritignoni E, Glorioso M, et al. Macrogol for the treatment of constipation in Parkinson’s disease. A randomized placebo-controlled study. Mov Disord. 2007;22(9):1239–44. https://doi.org/10.1002/mds.21243.

    Article  PubMed  Google Scholar 

  72. Ondo WG, Kenney C, Sullivan K, Davidson A, Hunter C, Jahan I, et al. Placebo-controlled trial of lubiprostone for constipation associated with Parkinson disease. Neurology. 2012;78(21):1650–4. https://doi.org/10.1212/WNL.0b013e3182574f28.

    Article  CAS  PubMed  Google Scholar 

  73. Barichelia M, Pacchetti C, Bolliri C, et al. Probiotics and prebiotic fiber for constipation associated with Pakinson disease: an RCT. Neurology. 2016;87(12):1274–80. https://doi.org/10.1212/WNL.0000000000003127.

    Article  Google Scholar 

  74. Jost WH, Schimrigk K. The effect of cisapride on delayed colonic transit time in patients with idiopathic Parkinson’s disease. Wien Klin Wochenschr. 1994;106(21):673–6.

    CAS  PubMed  Google Scholar 

  75. Jost WH, Schimrigk K. Long-term results with cisapride in Parkinson’s disease. Mov Disord. 1997;12(3):423–5. https://doi.org/10.1002/mds.870120324.

    Article  CAS  PubMed  Google Scholar 

  76. Morgan JC, Kapil S. Tegaserod in constipation associated with Parkinson’s disease. Clin Neuropharmacol. 2007;30(1):52–4. https://doi.org/10.1097/01.WNF.0000240942.21499.97.

    Article  CAS  PubMed  Google Scholar 

  77. Lui Z, Sakakibara R, Odaka T, et al. Mosapride citrate, a novel 5-HT4 agonist and partial 5-HT3 antagonist, ameliorates constipation in parkinsonian patients. Mov Disord. 2005;20:680–6.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge research support provided by the Parkinson’s Foundation through the 2017 CCRA Translational Clinical Research Grant. Furthermore, we would like to acknowledge Joe Kelley and the CSRA Parkinson Support Group for their engagement and support of our research.

Financial Disclosures

Amol Sharma serves on the advisory board for Ironwood Pharmaceuticals. JCM has received honoraria for speaking for Acadia, Impax, and Teva. He has served as a consultant for Acadia, Cynapsus, Impax, Neurocrine, Parkinson’s Foundation, and Teva. He has also received compensation for serving as an expert witness in various neurological legal cases. He has served as a site PI or sub-I for clinical trials with Abbvie, Acadia, Acorda, Biotie, CHDI, Cynapsus, Impax, Kyowa, Lilly, Lundbeck, NIH, Parkinson’s Foundation, PSG, Roche, and Serina. SSCR received research support from Ironwood/Forrest Pharmaceuticals and Intone Medical. SSCR serves on the advisory board for Ironwood/Forrest Pharmaceuticals, Synergy Pharmaceuticals, Salix Pharmaceuticals, Orphomed, and Vibrant Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol Sharma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

This article is part of the Topical Collection on Neurogastroenterology and Motility Disorders of the Gastrointestinal Tract

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Kurek, J., Morgan, J.C. et al. Constipation in Parkinson’s Disease: a Nuisance or Nuanced Answer to the Pathophysiological Puzzle?. Curr Gastroenterol Rep 20, 1 (2018). https://doi.org/10.1007/s11894-018-0609-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-018-0609-x

Keywords

Navigation