Skip to main content
Log in

RNA-seq methods for identifying differentially expressed gene in human pancreatic islet cells treated with pro-inflammatory cytokines

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Type 1 diabetes is a chronic autoimmune disease in which pancreatic beta cells are killed by the infiltrating immune cells as well as the cytokines released by these cells. Many studies indicate that inflammatory mediators have an essential role in this disease. In the present study, we profiled the transcriptome in human islets of langerhans under control conditions or following exposure to the pro-inflammatory cytokines based on the RNA sequencing dataset downloaded from SRA database. After filtered the low-quality ones, the RNA readers was aligned to human genome hg19 by TopHat and then assembled by Cufflinks. The expression value of each transcript was calculated and consequently differentially expressed genes were screened out. Finally, a total of 63 differentially expressed genes were identified including 60 up-regulated and three down-regulated genes. GBP5 and CXCL9 stood out as the top two most up-regulated genes in cytokines treated samples with the log2 fold change of 12.208 and 10.901, respectively. Meanwhile, PTF1A and REG3G were identified as the top two most down-regulated genes with the log2 fold change of −3.759 and −3.606, respectively. Of note, we also found 262 lncRNAs (long non-coding RNA), 177 of which were inferred as novel lncRNAs. Further in-depth follow-up analysis of the transcriptional regulation reported in this study may shed light on the specific function of these lncRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619

    Article  PubMed  CAS  Google Scholar 

  2. Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  3. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28:503–510

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Mitchell Guttman IA, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A, Rinn JL, Regev A (2012) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22:577–591

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, Ten S, Sanz M, Exley M, Wilson B (2002) Multiple immuno-regulatory defects in type-1 diabetes. J Clin Investig 109:131–140

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Todd JA (2010) Etiology of type 1 diabetes. Immunity 32:457–467

    Article  PubMed  CAS  Google Scholar 

  11. Durinovic-Bello I, Schlosser M, Riedl M, Maisel N, Rosinger S, Kalbacher H, Deeg M, Ziegler M, Elliott J, Roep B (2004) Pro-and anti-inflammatory cytokine production by autoimmune T cells against preproinsulin in HLA-DRB1* 04, DQ8 Type 1 diabetes. Diabetologia 47:439–450

    Article  PubMed  CAS  Google Scholar 

  12. Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7

    Article  PubMed  CAS  Google Scholar 

  13. Epstein FH, Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  Google Scholar 

  14. Hultcrantz M, Hühn MH, Wolf M, Olsson A, Jacobson S, Williams BR, Korsgren O, Flodström-Tullberg M (2007) Interferons induce an antiviral state in human pancreatic islet cells. Virology 367:92–101

    Article  PubMed  CAS  Google Scholar 

  15. Ylipaasto P, Kutlu B, Rasilainen S, Rasschaert J, Salmela K, Teerijoki H, Korsgren O, Lahesmaa R, Hovi T, Eizirik DL (2005) Global profiling of coxsackievirus-and cytokine-induced gene expression in human pancreatic islets. Diabetologia 48:1510–1522

    Article  PubMed  CAS  Google Scholar 

  16. Rasschaert J, Ladrière L, Urbain M, Dogusan Z, Katabua B, Sato S, Akira S, Gysemans C, Mathieu C, Eizirik DL (2005) Toll-like receptor 3 and STAT-1 contribute to double-stranded RNA+ interferon-γ-induced apoptosis in primary pancreatic β-cells. J Biol Chem 280:33984–33991

    Article  PubMed  CAS  Google Scholar 

  17. Liu D, Darville M, Eizirik DL (2001) Double-stranded ribonucleic acid (RNA) induces β-cell Fas messenger RNA expression and increases cytokine-induced β-cell apoptosis. Endocrinology 142:2593–2599

    Article  PubMed  CAS  Google Scholar 

  18. Foulis A, Farquharson M, Meager A (1987) Immunoreactive α-interferon in insulin-secreting β cells in type 1 diabetes mellitus. Lancet 330:1423–1427

    Article  Google Scholar 

  19. Shimada A, Morimoto J, Kodama K, Suzuki R, Oikawa Y, Funae O, Kasuga A, Saruta T, Narumi S (2001) Elevated serum IP-10 levels observed in type 1 diabetes. Diabetes Care 24:510–515

    Article  PubMed  CAS  Google Scholar 

  20. Nicoletti F, Conget I, Di Mauro M, Di Marco R, Mazzarino M, Bendtzen K, Messina A, Gomis R (2002) Serum concentrations of the interferon-γ-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed type I diabetes mellitus patients and subjects at risk of developing the disease. Diabetologia 45:1107–1110

    Article  PubMed  CAS  Google Scholar 

  21. Hanifi-Moghaddam P, Kappler S, Seissler J, Müller-Scholze S, Martin S, Roep B, Strassburger K, Kolb H, Schloot N (2006) Altered chemokine levels in individuals at risk of Type 1 diabetes mellitus. Diabet Med 23:156–163

    Article  PubMed  CAS  Google Scholar 

  22. Wang X, Jia S, Geoffrey R, Alemzadeh R, Ghosh S, Hessner MJ (2008) Identification of a molecular signature in human type 1 diabetes mellitus using serum and functional genomics. J Immunol 180:1929–1937

    Article  PubMed  CAS  Google Scholar 

  23. Martin AP, Rankin S, Pitchford S, Charo IF, Furtado GC, Lira SA (2008) Increased expression of CCL2 in insulin-producing cells of transgenic mice promotes mobilization of myeloid cells from the bone marrow, marked insulitis, and diabetes. Diabetes 57:3025–3033

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Christen U, Mcgavern DB, Luster AD, Von Herrath MG, Oldstone MB (2003) Among CXCR3 chemokines, IFN-γ-inducible protein of 10 kDa (CXC chemokine ligand (CXCL) 10) but not monokine induced by IFN-γ (CXCL9) imprints a pattern for the subsequent development of autoimmune disease. J Immunol 171:6838–6845

    Article  PubMed  CAS  Google Scholar 

  25. Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nat Rev Endocrinol 5:219–226

    Article  PubMed  CAS  Google Scholar 

  26. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci 100:9440–9445

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W (2013) CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res 41:e74

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Haas BJ, Zody MC (2010) Advancing RNA-seq analysis. Nat Biotechnol 28:421

    Article  PubMed  CAS  Google Scholar 

  31. Yassour M, Kaplan T, Fraser HB, Levin JZ, Pfiffner J, Adiconis X, Schroth G, Luo S, Khrebtukova I, Gnirke A (2009) Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing. Proc Natl Acad Sci 106:3264–3269

    Article  PubMed Central  PubMed  Google Scholar 

  32. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol 28:511

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Eizirik DL, Sammeth M, Bouckenooghe T, Bottu G, Sisino G, Igoillo-Esteve M, Ortis F, Santin I, Colli ML, Barthson J (2012) The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet 8:e1002552

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Rose SD, Swift GH, Peyton MJ, Hammer RE, Macdonald RJ (2001) The role of PTF1-P48 in pancreatic acinar gene expression. J Biol Chem 276:44018–44026

    Article  PubMed  CAS  Google Scholar 

  35. Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, Gloyn AL, Edghill EL, Hattersley AT, Wellauer PK (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36:1301–1305

    Article  PubMed  CAS  Google Scholar 

  36. Obata J, Yano M, Mimura H, Goto T, Nakayama R, Mibu Y, Oka C, Kawaichi M (2001) p48 subunit of mouse PTF1 binds to RBP-Jκ/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos. Genes Cells 6:345–360

    Article  PubMed  CAS  Google Scholar 

  37. Lin JW, Biankin AV, Horb ME, Ghosh B, Prasad NB, Yee NS, Pack MA, Leach SD (2004) Differential requirement for ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. Dev Biol 274:491–503

    Article  PubMed  CAS  Google Scholar 

  38. Fukuda A, Kawaguchi Y, Furuyama K, Kodama S, Horiguchi M, Kuhara T, Kawaguchi M, Terao M, Doi R, Wright CV (2008) Reduction of Ptf1a gene dosage causes pancreatic hypoplasia and diabetes in mice. Diabetes 57:2421–2431

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Christa L, Felin M, Morali O, Simon M-T, Lasserre C, Brechot C, Sève A-P (1994) The human HIP gene, overexpressed in primary liver cancer encodes for a C-type carbohydrate binding protein with lactose binding activity. FEBS Lett 337:114–118

    Article  PubMed  CAS  Google Scholar 

  40. Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir S, Marchetti P, Weir GC (2010) Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One 5:e11499

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Terazono K, Uchiyama Y, Ide M, Watanabe T, Yonekura H, Yamamoto H, Okamoto H (1990) Expression of reg protein in rat regenerating islets and its co-localization with insulin in the beta cell secretory granules. Diabetologia 33:250–252

    Article  PubMed  CAS  Google Scholar 

  42. Miyaura C, Chen L, Appel M, Alam T, Inman L, Hughes SD, Milburn JL, Unger RH, Newgard CB (1991) Expression of reg/PSP, a pancreatic exocrine gene: relationship to changes in islet β-cell mass. Mol Endocrinol 5:226–234

    Article  PubMed  CAS  Google Scholar 

  43. Akiyama T, Takasawa S, Nata K, Kobayashi S, Abe M, Shervani NJ, Ikeda T, Nakagawa K, Unno M, Matsuno S (2001) Activation of Reg gene, a gene for insulin-producing β-cell regeneration: poly (ADP-ribose) polymerase binds Reg promoter and regulates the transcription by autopoly (ADP-ribosyl) ation. Proc Natl Acad Sci 98:48–53

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Kobayashi S, Akiyama T, Nata K, Abe M, Tajima M, Shervani NJ, Unno M, Matsuno S, Sasaki H, Takasawa S (2000) Identification of a receptor for reg (regenerating gene) protein, a pancreatic β-cell regeneration factor. J Biol Chem 275:10723–10726

    Article  PubMed  CAS  Google Scholar 

  45. Okamoto H (1999) The Reg gene family and Reg proteins: with special attention to the regeneration of pancreatic β-cells. J Hepatobiliary Pancreat Surg 6:254–262

    Article  PubMed  CAS  Google Scholar 

  46. Yip L, Su L, Sheng D, Chang P, Atkinson M, Czesak M, Albert PR, Collier A-R, Turley SJ, Fathman CG (2009) Deaf1 isoforms control the expression of genes encoding peripheral tissue antigens in the pancreatic lymph nodes during type 1 diabetes. Nat Immunol 10:1026–1033

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Pugazhenthi U, Velmurugan K, Tran A, Mahaffey G, Pugazhenthi S (2010) Anti-inflammatory action of exendin-4 in human islets is enhanced by phosphodiesterase inhibitors: potential therapeutic benefits in diabetic patients. Diabetologia 53:2357–2368

    Article  PubMed  CAS  Google Scholar 

  48. Vukkadapu SS, Belli JM, Ishii K, Jegga AG, Hutton JJ, Aronow BJ, Katz JD (2005) Dynamic interaction between T cell-mediated β-cell damage and β-cell repair in the run up to autoimmune diabetes of the NOD mouse. Physiol Genomics 21:201–211

    Article  PubMed  CAS  Google Scholar 

  49. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2:108–115

    Article  PubMed  CAS  Google Scholar 

  50. Jamali Z, Nazari M, Khoramdelazad H, Hakimizadeh E, Mahmoodi M, Karimabad MN, Hassanshahi G, Rezaeian M, Balaei P, Darakhshan S (2013) Expression of CC chemokines CCL2, CCL5, and CCL11 is associated with duration of disease and complications in type-1 diabetes: a study on Iranian diabetic patients. Clin. Lab 11:1

    Google Scholar 

  51. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Investig 115:1111–1119

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Navarro JF, Milena FJ, Mora C, Leon C, Garcia J (2007) Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am J Nephrol 26:562–570

    Article  CAS  Google Scholar 

  53. Boehm U, Klamp T, Groot M, Howard J (1997) Cellular responses to interferon-γ. Annu Rev Immunol 15:749–795

    Article  PubMed  CAS  Google Scholar 

  54. Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, Macmicking JD (2012) GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336:481–485

    Article  PubMed  CAS  Google Scholar 

  55. Haneklaus M, O’neill LA, Coll RC (2013) Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: recent developments. Curr Opin Immunol 25(1):40–45

    Google Scholar 

  56. Lehuen A, Diana J, Zaccone P, Cooke A (2010) Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol 10:501–513

    Article  PubMed  CAS  Google Scholar 

  57. Yan B, Wang Z (2012) Long noncoding RNA: its physiological and pathological roles. DNA Cell Biol 31:S-34–S-41

    Article  CAS  Google Scholar 

  58. Alvarez ML, Distefano JK (2012) The role of non-coding RNAs in diabetic nephropathy: potential applications as biomarkers for disease development and progression. Diabetes Res Clin Pract 99(1):1–11

    Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the Foundation of Heilongjiang Provincial Education Department of China (12531319, 11551238), Foundation of Heilongjiang Provincial Health Department of China (2009-181, 2009-207, 2012-715), Foundation of Heilongjiang Provincial Postdoctor of China (LBH-Z11086). We wish to express our warm thanks to Fenghe (Shanghai) Information Technology Co., Ltd. Their ideas and help gave a valuable added dimension to our research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Qi Zhang, Ai Xia Zhai or Zhi Feng Cheng.

Additional information

Bo Li, Chang Long Bi and Ning Lang are co-first authors in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Bi, C.L., Lang, N. et al. RNA-seq methods for identifying differentially expressed gene in human pancreatic islet cells treated with pro-inflammatory cytokines. Mol Biol Rep 41, 1917–1925 (2014). https://doi.org/10.1007/s11033-013-3016-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-3016-2

Keywords

Navigation