Skip to main content
Log in

Tissue-Engineering Approaches to Restore Kidney Function

  • Immunology and Transplantation (A Pileggi, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Kidney transplantation for the treatment of chronic kidney disease has established outcome and quality of life. However, its implementation is severely limited by a chronic shortage of donor organs; consequently, most candidates remain on dialysis and on the waiting list while accruing further morbidity and mortality. Furthermore, those patients that do receive kidney transplants are committed to a life-long regimen of immunosuppressive drugs that also carry significant adverse risk profiles. The disciplines of tissue engineering and regenerative medicine have the potential to produce alternative therapies which circumvent the obstacles posed by organ shortage and immunorejection. This review paper describes some of the most promising tissue-engineering solutions currently under investigation for the treatment of acute and chronic kidney diseases. The various stem cell therapies, whole embryo transplantation, and bioengineering with ECM scaffolds are outlined and summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wolfe RA, Ashby VB, Milford EL, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med. 1999;341(23):1725–30.

    Article  CAS  PubMed  Google Scholar 

  2. Abecassis M, Bartlett ST, Collins AJ, et al. Kidney transplantation as primary therapy for end-stage renal disease: a National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) conference. Clin J Am Soc Nephrol. 2008;3(2):471–80.

    Article  PubMed Central  PubMed  Google Scholar 

  3. National Kidney Foundation. Organ donation and transplant statistics. https://www.kidney.org/news/newsroom/factsheets/Organ-Donation-and-Transplantation-Stats (accessed 1 Feb 2015).

  4. Organ Procurement and Transplantation Network. http://optn.transplant.hrsa.gov/converge/latestData/rptData.asp (accessed 6 Feb 2015).

  5. Murphy SV, Atala A. Organ engineering—combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. Bioessays. 2013;35(3):163–72.

    Article  CAS  PubMed  Google Scholar 

  6. Quint C, Kondo Y, Manson RJ, Lawson JH, Dardik A, Niklason LE. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc Natl Acad Sci U S A. 2011;108(22):9214–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sodian R, Hoerstrup SP, Sperling JS, Daebritz S, Martin DP, Moran AM, et al. Early in-vivo experience with tissue-engineered trileaflet heart valves. Circulation. 2000;102:III22–9.

    Article  CAS  PubMed  Google Scholar 

  8. Jungebluth P, Alici E, Baiguera S, et al. Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet. 2011;378(9808):1997–2004.

    Article  CAS  PubMed  Google Scholar 

  9. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17 Suppl 4:467–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Tapias LF, Ott HC. Decellularized scaffolds as a platform for bioengineered organs. Curr Opin Organ Transplant. 2014;19(2):145–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Zambon JP, Magalhaes RS, Ko I, et al. Kidney regeneration: where we are and future perspectives. World J Nephrol. 2014;3(3):24–30.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Salvatori M, Peloso A, Katari R, Orlando G. Regeneration and bioengineering of the kidney: current status and future challenges. Curr Urol Rep. 2014;15(1):379.

    Article  PubMed  Google Scholar 

  13. Bonventre JV. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol. 2003;14 Suppl 1:S55–61.

    Article  PubMed  Google Scholar 

  14. Nagaike M, Hirao S, Tajima H, et al. Renotropic functions of hepatocyte growth factor in renal regeneration after unilateral nephrectomy. J Biol Chem. 1991;266(34):22781–4.

    CAS  PubMed  Google Scholar 

  15. Cochrane AL, Kett MM, Samuel CS, et al. Renal structural and functional repair in a mouse model of reversal of ureteral obstruction. J Am Soc Nephrol. 2005;16(12):3623–30.

    Article  CAS  PubMed  Google Scholar 

  16. Davidson AJ. Uncharted waters: nephrogenesis and renal regeneration in fish and mammals. Pediatr Nephrol. 2011;26(9):1435–43.

    Article  PubMed  Google Scholar 

  17. Maeshima A, Nakasatomi M, Nojima Y. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy. Biomed Res Int. 2014;2014:595493.

    PubMed Central  PubMed  Google Scholar 

  18. Spradling A, Drummond-barbosa D, Kai T. Stem cells find their niche. Nature. 2001;414(6859):98–104.

    Article  CAS  PubMed  Google Scholar 

  19. Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005;21:605–31.

    Article  CAS  PubMed  Google Scholar 

  20. Kusaba T, Lalli M, Kramann R, Kobayashi A, Humphreys BD. Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci U S A. 2014;111(4):1527–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Poulsom R, Forbes SJ, Hodivala-dilke K, et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol. 2001;195(2):229–35.

    Article  CAS  PubMed  Google Scholar 

  22. Ito T, Suzuki A, Imai E, Okabe M, Hori M. Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol. 2001;12(12):2625–35.

    CAS  PubMed  Google Scholar 

  23. Morigi M, Imberti B, Zoja C, et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol. 2004;15(7):1794–804.

    Article  PubMed  Google Scholar 

  24. Pleniceanu O, Harari-steinberg O, Dekel B. Concise review: Kidney stem/progenitor cells: differentiate, sort out, or reprogram? Stem Cells. 2010;28(9):1649–60.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Romagnani P, Lasagni L, Remuzzi G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat Rev Nephrol. 2013;9(3):137–46.

    Article  CAS  PubMed  Google Scholar 

  26. Yeagy BA, Cherqui S. Kidney repair and stem cells: a complex and controversial process. Pediatr Nephrol. 2011;26(9):1427–34.

    Article  PubMed  Google Scholar 

  27. Katari R, Peloso A, Orlando G. Tissue engineering and regenerative medicine: semantic considerations for an evolving paradigm. Front Bioeng Biotechnol. 2014;2:57.

    PubMed Central  PubMed  Google Scholar 

  28. Little MH. Regrow or repair: potential regenerative therapies for the kidney. J Am Soc Nephrol. 2006;17(9):2390–401.

    Article  PubMed  Google Scholar 

  29. Orlando G, Wood KJ, Soker S, Stratta RJ. How regenerative medicine may contribute to the achievement of an immunosuppression-free state. Transplantation. 2011;92:36–8.

    Article  Google Scholar 

  30. Witzgall R, Brown D, Schwarz C, Bonventre JV. Localization of proliferating cell nuclear antigen, vimentin, c-Fos and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments and a large pool of mitotically active and dediffferentiated cells. J Clin Invest. 1994;93:2175–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36.

    Article  CAS  PubMed  Google Scholar 

  32. Burdon TJ, Paul A, Noiseux N, Prakash S, Shum-Tim D. Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspective and therapeutic potential. Bone Marrow Res. 2011;2011:207326.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Bussolati B, Camussi G. Stem cells in acute kidney injury. Contrib Nephrol. 2007;156:250–8.

    Article  PubMed  Google Scholar 

  34. Xing L, Cui R, Peng L, et al. Mesenchymal stem cells, not conditioned medium, contribute to kidney repair after ischemia-reperfusion injury. Stem Cell Res Ther. 2014;5(4):101.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Pelekanos RA, Li J, Gongora M, et al. Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. Stem Cell Res. 2012;8(1):58–73.

    Article  CAS  PubMed  Google Scholar 

  36. Bruno S, Camussi G. Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Methods Mol Biol. 2012;879:367–80.

    Article  CAS  PubMed  Google Scholar 

  37. Peng Y, Ke M, Xu L, et al. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study. Transplantation. 2013;95(1):161–8.

    Article  CAS  PubMed  Google Scholar 

  38. Tan J, Wu W, Xu X, et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 2012;307(11):1169–77.

    Article  CAS  PubMed  Google Scholar 

  39. Humphreys BD, Bonventre JV. Mesenchymal stem cells in acute kidney injury. Annu Rev Med. 2008;59:311–25.

    Article  CAS  PubMed  Google Scholar 

  40. Lange C, Togel F, Ittrich H, Clayton F, Nolte-Ernsting C, Zander AR, et al. Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion induced acute renal failure in rats. Kidney Int. 2005;4:1613–7.

    Article  Google Scholar 

  41. Morigi M, Introna M, Imberti B, Corna D, Abbate M, Rota C, et al. Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells. 2008;26:2075–82.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao JJ, Liu JL, Liu L, Jia HY. Protection of mesenchymal stem cells on acute kidney injury. Mol Med Rep. 2014;9:91–6.

    CAS  PubMed  Google Scholar 

  43. Zerbini G, Piemonti L, Maestroni A, Dell'antonio G, Bianchi G. Stem cells and the kidney: a new therapeutic tool? J Am Soc Nephrol. 2006;17(4 Suppl 2):S123–6.

    Article  PubMed  Google Scholar 

  44. Morizane R, Monkawa T, Itoh H. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro. Biochem Biophys Res Commun. 2009;390(4):1334–9.

    Article  CAS  PubMed  Google Scholar 

  45. Kim D, Dressler GR. Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol. 2005;16(12):3527–34.

    Article  CAS  PubMed  Google Scholar 

  46. Lusis M, Li J, Ineson J, Christensen ME, Rice A, Little MH. Isolation of clonogenic, long-term self renewing embryonic renal stem cells. Stem Cell Res. 2010;5(1):23–39.

    Article  CAS  PubMed  Google Scholar 

  47. Bruce SJ, Rea RW, Steptoe AL, Busslinger M, Bertram JF, Perkins AC. In vitro differentiation of murine embryonic stem cells toward a renal lineage. Differentiation. 2007;75(5):337–49.

    Article  CAS  PubMed  Google Scholar 

  48. Takasato M, Er PX, Becroft M, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014;16(1):118–26. In this study, the investigators successfully showed that embryogenic growth factors could successfully induce human embryonic stem cell differentiation through the primordial kidney developmental stages. Cells manipulated in this way exhibited self-organization and nephron formation in vivo.

    Article  CAS  PubMed  Google Scholar 

  49. Trinkaus JP, Groves PW. Differentiation in culture of mixed aggregates of dissociated tissue cells. Proc Natl Acad Sci U S A. 1955;41(10):787–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Denker HW. Potentiality of embryonic stem cells: an ethical problem even with stem cell source. J Med Ethics. 2006;32:665–71.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Aldahmash A, Atteya M, Elsafadi M, Al-Nbaheen M, Al-Mubarak HA, Vishnubalaji R, et al. Teratoma formation in immunocompetent mice after syngeneic and allogeneic implantation of gerline capable mouse embryonic stem cells. Asian Pac J Cancer Prev. 2013;14:5705–11.

    Article  PubMed  Google Scholar 

  52. Polgár K, Adány R, Abel G, Kappelmayer J, Muszbek L, Papp Z. Characterization of rapidly adhering amniotic fluid cells by combined immunofluorescence and phagocytosis assays. Am J Hum Genet. 1989;45(5):786–92.

    PubMed Central  PubMed  Google Scholar 

  53. De Coppi P, Bartsch G, Siddiqui MM, et al. Isolation of amniotic stem cell line with potential for therapy. Nat Biotechnol. 2007;25:100–6.

    Article  PubMed  Google Scholar 

  54. Hipp J, Atala A. Sources of stem cells for regenerative medicine. Stem Cell Rev. 2008;4(1):3–11.

    Article  PubMed  Google Scholar 

  55. Perin L, Giuliani S, Jin D, Sedrakyan S, Carraro G, Habibian R, et al. Renal differentiation of amniotic fluid stem cells. Cell Prolif. 2007;40:936–48.

    Article  CAS  PubMed  Google Scholar 

  56. Noronha IL, Cavaglieri RC, Janz FL, et al. The potential use of stem cells derived from human amniotic fluid in renal diseases. Kidney Int Suppl. 2011;1(3):77–82.

    Article  Google Scholar 

  57. Hauser PV, De Fazio R, Bruno S, et al. Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. Am J Pathol. 2010;177(4):2011–21.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Baulier E, Favreau F, Le Corf A, et al. Amniotic fluid-derived mesenchymal stem cells prevent fibrosis and preserve renal function in a preclinical porcine model of kidney transplantation. Stem Cells Transl Med. 2014;3(7):809–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  60. Aasen T, Raya A, Barrero MJ, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008;26(11):1276–84.

    Article  CAS  PubMed  Google Scholar 

  61. Wang J, Gu Q, Hao J, et al. Generation of induced pluripotent stem cells with high efficiency from human umbilical cord blood mononuclear cells. Genomics Proteomics Bioinformatics. 2013;11(5):304–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Mae S, Shono A, Shiota F, et al. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun. 2013;4:1367.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Araoka T, Mae S, Kurose Y, et al. Efficient and rapid induction of human iPSCs/ESCs into nephrogenic intermediate mesoderm using small molecule-based differentiation methods. PLoS ONE. 2014;9(1), e84881.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Taguchi A, Kaku Y, Ohmori T, et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14(1):53–67.

    Article  CAS  PubMed  Google Scholar 

  65. Xia Y, Nivet E, Sancho-martinez I, et al. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol. 2013;15(12):1507–15.

    Article  CAS  PubMed  Google Scholar 

  66. Lee PY, Chien Y, Chiou GY, Lin CH, Chiou CH, Tarng DC. Induced pluripotent stem cells without c-Myc attenuate acute kidney injury via downregulating the signaling of oxidative stress and inflammation in ischemia-reperfusion rats. Cell Transplant. 2012;21(12):2569–85.

    Article  PubMed  Google Scholar 

  67. Hammerman MR. Therapeutic promise of embryonic kidney transplantation. Nephron Exp Nephrol. 2003;93(2), e58.

    Article  PubMed  Google Scholar 

  68. Rogers SA, Lowell JA, Hammerman NA, Hammerman MR. Transplantation of developing metanephroi into adult rats. Kidney Int. 1998;54(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  69. Bottomley MJ, Baicu S, Boggs JM, et al. Preservation of embryonic kidneys for transplantation. Transplant Proc. 2005;37(1):280–4.

    Article  CAS  PubMed  Google Scholar 

  70. Abrahamson DR, St john PL, Pillion DJ, Tucker DC. Glomerular development in intraocular and intrarenal grafts of fetal kidneys. Lab Invest. 1991;64(5):629–39.

    CAS  PubMed  Google Scholar 

  71. Woolf AS, Palmer SJ, Snow ML, Fine LG. Creation of a functioning chimeric mammalian kidney. Kidney Int. 1990;38(5):991–7.

    Article  CAS  PubMed  Google Scholar 

  72. D'agati VD. Growing new kidneys from embryonic cell suspensions: fantasy or reality? J Am Soc Nephrol. 2012;23(11):1763–6.

    Article  PubMed  Google Scholar 

  73. Imberti B, Corna D, Rizzo P, et al. Renal primordia activate kidney regenerative events in a rat model of progressive renal disease. PLoS ONE. 2015;10(3), e0120235.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Francipane MG, Lagasse E. The lymph node as a new site for kidney organogenesis. Stem Cells Transl Med. 2015;4(3):295–307.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Hammerman MR. Organogenesis of kidneys following transplantation of renal progenitor cells. Transpl Immunol. 2004;12(3–4):229–39.

    Article  CAS  PubMed  Google Scholar 

  76. Dekel B, Amariglio N, Kaminski N, et al. Engraftment and differentiation of human metanephroi into functional mature nephrons after transplantation into mice is accompanied by a profile of gene expression similar to normal human kidney development. J Am Soc Nephrol. 2002;13(4):977–90.

    CAS  PubMed  Google Scholar 

  77. Dekel B, Burakova T, Arditti FD, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat Med. 2003;9(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  78. Orlando G, Wood KJ, De Coppi P, et al. Regenerative medicine as applied to general surgery. Ann Surg. 2012;255(5):867–80.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J Theor Biol. 1982;99:31–68.

    Article  CAS  PubMed  Google Scholar 

  80. Atala A, Bauer SB, Soker S, et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6.

    Article  PubMed  Google Scholar 

  81. Hibino N, McGillicuddy E, Matsumura G, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg. 2010;139:431–6. 436.e1–436.e2.

    Article  PubMed  Google Scholar 

  82. Raya-Rivera A, Esquiliano DR, Yoo JJ, et al. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet. 2011;377:1175–82.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Olausson M, Patil PB, Kuna VK, et al. Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. Lancet. 2012;380:230–7.

    Article  PubMed  Google Scholar 

  84. Zhang P, Luo X, Wang H. Clinical transplantation of a tissue-engineered airway. Lancet. 2009;373(9665):71.

    Article  Google Scholar 

  85. Baiguera S, Birchall MA, Macchiarini P. Tissue-engineered tracheal transplantation. Transplantation. 2010;89(5):485–91.

    Article  PubMed  Google Scholar 

  86. Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001;344:385–6.

    Article  CAS  PubMed  Google Scholar 

  87. Gonfiotti A, Jaus MO, Barale D, et al. The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet. 2014;383(9913):238–44.

    Article  PubMed  Google Scholar 

  88. Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.

    Article  PubMed  Google Scholar 

  89. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A. 2010;16(7):2207–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Sullivan DC, Mirmalek-sani SH, Deegan DB, et al. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 2012;33(31):7756–64.

    Article  CAS  PubMed  Google Scholar 

  91. Orlando G, Farney AC, Iskandar SS, et al. Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Ann Surg. 2012;256(2):363–70.

    Article  PubMed  Google Scholar 

  92. Matas AJ, Smith JM, Skeans MA, et al. OPTN/SRTR 2011 annual data report: kidney. Am J Transplant. 2013;13:11–46.

    Article  PubMed  Google Scholar 

  93. Orlando G, Booth C, Wang Z, et al. Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials. 2013;34:5915–25. Though proof-of-concept has been established for kidney bioengineering, the identification of a realistic, viable source of biocompatible scaffolds was a major obstacle. In this paper, the authors demonstrated that the 2600 kidneys discarded annually could be used a source for extracellular matrix scaffolds in bioengineering strategies.

    Article  CAS  PubMed  Google Scholar 

  94. Peloso A, Petrosyan A, Da Sacco S, Booth C, Zambon JP, O’Brien T, Aardema C, Robertson J, De Filippo RE, Soker S, Stratta RJ, Perin L, Orlando G. Renal ECM scaffolds from discarded kidneys maintain glomerular morphometry and vascular resilience, and retains critical growth factors. Transplantation, in press

  95. Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19(5):646–51. In this paper, the investigators were able to bioengineer rat kidneys and implant them orthotopically in rats with dramatic success. The implanted grafts were reperfused by the recipient’s circulation and produced urine.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Petrosyan A, Orlando G, Peloso A, Wang Z, Farney AC, Rogers G, et al. Understanding the bioactivity of stem cells seeded on extracellular matrix scaffolds produced from discarded human kidneys: a critical step towards a new generation bio-artificial kidney. CellR4. 2015;3(1):e1401.

    Google Scholar 

  97. Bonandrini B, Figliuzzi M, Papadimou E, et al. Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng Part A. 2014;20(9–10):1486–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Nakayama KH, Lee CC, Batchelder CA, Tarantal AF. Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS ONE. 2013;8(5), e64134.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Peloso A, Katari R, Murphy SV, Zambon JP, Defrancesco A, Farney AC, et al. Prospect for kidney bioengineering: shortcomings of the status quo. Expert Opin Biol Ther. 2015;15(4):547–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Giuseppe Orlando’s research is supported by Liberitutti ONLUS Foundation.

Compliance with Ethics Guidelines

Conflict of Interest

Ravi Katari, Lauren Edgar, Theresa Wong, Angela Boey, Sarah Mancone, Daniel Igel, Tyler Callese, Marcia Voigt, Riccardo Tamburrini, Laura Perin, and Giuseppe Orlando declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Orlando.

Additional information

This article is part of the Topical Collection on Immunology and Transplantation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katari, R., Edgar, L., Wong, T. et al. Tissue-Engineering Approaches to Restore Kidney Function. Curr Diab Rep 15, 69 (2015). https://doi.org/10.1007/s11892-015-0643-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0643-0

Keywords

Navigation