Skip to main content

The Renal Extracellular Matrix as a Supportive Scaffold for Kidney Tissue Engineering: Progress and Future Considerations

  • Chapter
  • First Online:
Decellularization Methods of Tissue and Whole Organ in Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1345))

  • 1065 Accesses

Abstract

During the past decades, diverse methods have been used toward renal tissue engineering in order to replace renal function. The goals of all these techniques included the recapitulation of renal filtration, re-absorptive, and secretary functions, and replacement of endocrine/metabolic activities. It is also imperative to develop a reliable, up scalable, and timely manufacturing process. Decellularization of the kidney with intact ECM is crucial for in-vivo compatibility and targeted clinical application. Contemporarily there is an increasing interest and research in the field of regenerative medicine including stem cell therapy and tissue bioengineering in search for new and reproducible sources of kidneys. In this chapter, we sought to determine the most effective method of renal decellularization and recellularization with emphasis on biologic composition and support of stem cell growth. Current barriers and limitations of bioengineered strategies will be also discussed, and strategies to overcome these are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebischer P, Ip TK, Panol G, Galletti PM (1987) The bioartificial kidney: progress towards an ultrafiltration device with renal epithelial cells processing. Life Support Syst: J Eur Soc Artif Organs 5(2):159–168

    CAS  Google Scholar 

  • Alachkar N, Rabb H, Jaar BG (2011) Urinary biomarkers in acute kidney transplant dysfunction. Nephron Clin Pract 118(2):c173–c181

    Article  CAS  PubMed  Google Scholar 

  • Al-Awqati Q, Oliver JA (2002) Stem cells in the kidney. Kidney Int 61(2):387–395

    Article  PubMed  Google Scholar 

  • Angelotti ML, Ronconi E, Ballerini L, Peired A, Mazzinghi B, Sagrinati C et al (2012) Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30(8):1714–1725

    Article  CAS  PubMed  Google Scholar 

  • Asfar SK, Catto GR, Engeset J (1988) The rat renal transplant model. Details of microsurgical technique and complications. J R Coll Surg Edinb 33(6):314–317

    CAS  PubMed  Google Scholar 

  • Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12(3–4):367–377. https://doi.org/10.1016/j.trim.2003.12.016

    Article  CAS  PubMed  Google Scholar 

  • Bandeiras C, Cabral JM, Gabbay RA, Finkelstein SN, Ferreira FC (2019) Bringing stem cell-based therapies for type 1 diabetes to the clinic: early insights from bioprocess economics and cost-effectiveness analysis. Biotechnol J 14(8):1800563

    Article  CAS  Google Scholar 

  • Baptista PM, Orlando G, Mirmalek-Sani SH, Siddiqui M, Atala A, Soker S (2009) Whole organ decellularization—a tool for bioscaffold fabrication and organ bioengineering. Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society annual conference. 2009:6526–6529. https://doi.org/10.1109/iembs.2009.5333145

  • Benedetti V, Lavecchia AM, Locatelli M, Brizi V, Corna D, Todeschini M et al (2019) Alteration of thyroid hormone signaling triggers the diabetes-induced pathological growth, remodeling, and dedifferentiation of podocytes. JCI Insight. 4(18)

    Google Scholar 

  • Bijonowski BM, Miller WM, Wertheim JA (2013) Bioreactor design for perfusion-based, highly-vascularized organ regeneration. Curr Opin Chem Eng 2(1):32–40. https://doi.org/10.1016/j.coche.2012.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Blake J, Rosenblum ND (eds) (2014) Renal branching morphogenesis: morphogenetic and signaling mechanisms. Seminars in cell & developmental biology. Elsevier

    Google Scholar 

  • Bland R, Zehnder D, Hewison M (2000) Expression of 25-hydroxyvitamin D3–1α-hydroxylase along the nephron: new insights into renal vitamin D metabolism. Curr Opin Nephrol Hypertens 9(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Bonandrini B, Figliuzzi M, Papadimou E, Morigi M, Perico N, Casiraghi F et al (2014) Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng Part A 20(9–10):1486–1498. https://doi.org/10.1089/ten.TEA.2013.0269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AC, Muthukrishnan SD, Oxburgh L (2015) A synthetic niche for nephron progenitor cells. Dev Cell 34(2):229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20(5):1053–1067. https://doi.org/10.1681/asn.2008070798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgkart R, Tron A, Prodinger P, Culmes M, Tuebel J, van Griensven M et al (2014) Decellularized kidney matrix for perfused bone engineering. Tissue Eng Part C Methods 20(7):553–561. https://doi.org/10.1089/ten.TEC.2013.0270

    Article  PubMed  Google Scholar 

  • Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D et al (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166(2):545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caralt M (2015) Present and future of regenerative medicine: liver transplantation. Transpl Proc 47(8):2377–2379. https://doi.org/10.1016/j.transproceed.2015.08.029

    Article  CAS  Google Scholar 

  • Caralt M, Uzarski JS, Iacob S, Obergfell KP, Berg N, Bijonowski BM et al (2015) Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transplant 15(1):64–75

    Article  CAS  PubMed  Google Scholar 

  • Chertow GM, Waikar SS (2008) Toward the promise of renal replacement therapy. J Am Soc Nephrol 19(5):839–840. https://doi.org/10.1681/asn.2008030291

    Article  PubMed  Google Scholar 

  • Choi SH, Chun SY, Chae SY, Kim JR, Oh SH, Chung SK et al (2015) Development of a porcine renal extracellular matrix scaffold as a platform for kidney regeneration. J Biomed Mater Res, Part A 103(4):1391–1403. https://doi.org/10.1002/jbm.a.35274

    Article  CAS  Google Scholar 

  • Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figliuzzi M, Remuzzi G, Remuzzi A (2017) Recellularization of kidney scaffold with stem cells. In: Kidney transplantation, bioengineering and regeneration. Elsevier, p 877–86

    Google Scholar 

  • Fissell WH, Kimball J, Mackay SM, Funke A, Humes HD (2001) The role of a bioengineered artificial kidney in renal failure

    Google Scholar 

  • Fraser SJ, Endres C (2014) Quorus bioreactor: a new perfusion-based technology for microbial cultivation. Adv Biochem Eng Biotechnol 138:149–177. https://doi.org/10.1007/10_2013_238

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Liu S, Liu Y, Sun C, Cheng G, Luan Y et al (2015a) Porcine kidneys as a source of ECM scaffold for kidney regeneration. Mater Sci Eng, C Mater Biol Appl 56:451–456. https://doi.org/10.1016/j.msec.2015.07.007

    Article  CAS  Google Scholar 

  • Guan Y, Liu S, Sun C, Cheng G, Kong F, Luan Y et al (2015b) The effective bioengineering method of implantation decellularized renal extracellular matrix scaffolds. Oncotarget 6(34):36126–36138. https://doi.org/10.18632/oncotarget.5304

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammerman MR (2003) Tissue engineering the kidney. Kidney Int 63(4):1195–1204

    Article  PubMed  Google Scholar 

  • He M, Callanan A, Lagaras K, Steele JAM, Stevens MM (2017) Optimization of SDS exposure on preservation of ECM characteristics in whole organ decellularization of rat kidneys. J Biomed Mater Res B Appl Biomater 105(6):1352–1360. https://doi.org/10.1002/jbm.b.33668

    Article  CAS  PubMed  Google Scholar 

  • Hielscher D, Kaebisch C, Braun BJV, Gray K, Tobiasch E (2018) Stem cell sources and graft material for vascular tissue engineering. Stem Cell Rev Rep 14(5):642–667

    Article  CAS  PubMed  Google Scholar 

  • Horster MF, Braun GS, Huber SM (1999) Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev 79(4):1157–1191

    Article  CAS  PubMed  Google Scholar 

  • Humes HD, Mackay SM, Funke AJ, Buffington DA (1999) Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int 55(6):2502–2514

    Article  CAS  PubMed  Google Scholar 

  • Humes HD, Fissell WH, Weitzel WF, Buffington DA, Westover AJ, MacKay SM et al (2002) Metabolic replacement of kidney function in uremic animals with a bioartificial kidney containing human cells. Am J Kidney Dis 39(5):1078–1087

    Article  PubMed  Google Scholar 

  • Humes HD, Weitzel WF, Bartlett RH, Swaniker FC, Paganini EP (2003) Renal cell therapy is associated with dynamic and individualized responses in patients with acute renal failure. Blood Purif 21(1):64–71. https://doi.org/10.1159/000067864

    Article  PubMed  Google Scholar 

  • Humes HD, Weitzel WF, Bartlett RH, Swaniker FC, Paganini EP, Luderer JR et al (2004) Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kidney Int 66(4):1578–1588. https://doi.org/10.1111/j.1523-1755.2004.00923.x

    Article  CAS  PubMed  Google Scholar 

  • Humes HD, Buffington D, Westover AJ, Roy S, Fissell WH (2014) The bioartificial kidney: current status and future promise. Pediatr Nephrol 29(3):343–351. https://doi.org/10.1007/s00467-013-2467-y

    Article  PubMed  Google Scholar 

  • Humphreys BD (2014) Kidney injury, stem cells and regeneration. Curr Opin Nephrol Hypertens 23(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  • Humphreys BD, Bonventre JV (2008) Mesenchymal stem cells in acute kidney injury. Annu Rev Med 59:311–325

    Article  CAS  PubMed  Google Scholar 

  • Hyink DP, Tucker DC, St John P, Leardkamolkarn V, Accavitti M, Abrass C et al (1996) Endogenous origin of glomerular endothelial and mesangial cells in grafts of embryonic kidneys. Am J Physiol-Renal Physiol 270(5):F886–F899

    Article  CAS  Google Scholar 

  • Ip TK, Aebischer P (1989) Renal epithelial-cell-controlled solute transport across permeable membranes as the foundation for a bioartificial kidney. Artif Organs 13(1):58–65. https://doi.org/10.1111/j.1525-1594.1989.tb02833.x

    Article  CAS  PubMed  Google Scholar 

  • Kajbafzadeh AM, Elmi A, Talab SS, Sadeghi Z, Emami H, Sotoudeh M (2010) Autografting of renal progenitor cells ameliorates kidney damage in experimental model of pyelonephritis. Cell Med 1(3):115–122. https://doi.org/10.3727/215517910x551044

    Article  PubMed  PubMed Central  Google Scholar 

  • Kajbafzadeh AM, Abbasioun R, Sabetkish N, Sabetkish S, Habibi AA, Tavakkolitabassi K (2017) In vivo human corpus cavernosum regeneration: fabrication of tissue-engineered corpus cavernosum in rat using the body as a natural bioreactor. Int Urol Nephrol 49(7):1193–1199. https://doi.org/10.1007/s11255-017-1582-2

    Article  CAS  PubMed  Google Scholar 

  • Kajbafzadeh AM, Khorramirouz R, Kameli SM, Nabavizadeh B (2018) Microsurgical anastomosis of renal vasculature in rats: a practical platform for acellular kidney transplantation. J Pediatr Urol 14(2):194–195. https://doi.org/10.1016/j.jpurol.2018.01.008

    Article  PubMed  Google Scholar 

  • Kajbafzadeh A-M, Khorramirouz R, Nabavizadeh B, Seyedian S-SL, Akbarzadeh A, Heidari R et al (2019) Whole organ sheep kidney tissue engineering and in vivo transplantation: effects of perfusion-based decellularization on vascular integrity. Mater Sci Eng C 98:392–400

    Article  CAS  Google Scholar 

  • Kawecki M, Łabuś W, Klama-Baryla A, Kitala D, Kraut M, Glik J et al (2018) A review of decellurization methods caused by an urgent need for quality control of cell-free extracellular matrix’scaffolds and their role in regenerative medicine. J Biomed Mater Res B Appl Biomater 106(2):909–923

    Article  CAS  PubMed  Google Scholar 

  • Lam AQ, Freedman BS, Morizane R, Lerou PH, Valerius MT, Bonventre JV (2014) Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol 25(6):1211–1225

    Article  CAS  PubMed  Google Scholar 

  • Lazzeri E, Ronconi E, Angelotti ML, Peired A, Mazzinghi B, Becherucci F et al (2015) Human urine-derived renal progenitors for personalized modeling of genetic kidney disorders. J Am Soc Nephrol 26(8):1961–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuning DG, Lievers E, Reinders ME, van Kooten C, Engelse MA, Rabelink TJ (2017) A novel clinical grade isolation method for human kidney perivascular stromal cells. J Visualized Exp 126:e55841

    Google Scholar 

  • Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353–367. https://doi.org/10.1038/nrg2091

    Article  CAS  PubMed  Google Scholar 

  • Lih E, Park KW, Chun SY, Kim H, Kwon TG, Joung YK et al (2016) Biomimetic porous PLGA scaffolds incorporating decellularized extracellular matrix for kidney tissue regeneration. ACS Appl Mater Interfaces 8(33):21145–21154. https://doi.org/10.1021/acsami.6b03771

    Article  CAS  PubMed  Google Scholar 

  • Little MH, McMahon AP (2012) Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol 4(5). https://doi.org/10.1101/cshperspect.a008300

  • Liu RF, Gao JS, Yang YF, Zeng WX (2015) Preparation of rat whole-kidney acellular matrix via peristaltic pump. Urol J 12(6):2457–2461

    PubMed  Google Scholar 

  • Locatelli F, Buoncristiani U, Canaud B, Köhler H, Petitclerc T, Zucchelli P (2005) Dialysis dose and frequency. Nephrol Dial Transplant 20(2):285–296

    Article  PubMed  Google Scholar 

  • MacKay SM, Funke AJ, Buffington DA, Humes HD (1998) Tissue engineering of a bioartificial renal tubule. ASAIO J (American Society for Artificial Internal Organs: 1992) 44(3):179–183

    Google Scholar 

  • Mae S-I, Shono A, Shiota F, Yasuno T, Kajiwara M, Gotoda-Nishimura N et al (2013) Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun 4(1):1–11

    Article  CAS  Google Scholar 

  • Martini AG, Danser AJ (2017) Juxtaglomerular cell phenotypic plasticity. High Blood Pressure Cardiovasc Prev 24(3):231–242

    Article  Google Scholar 

  • Maruyama H, Higuchi N, Nishikawa Y, Hirahara H, Iino N, Kameda S et al (2002) Kidney-targeted naked DNA transfer by retrograde renal vein injection in rats. Hum Gene Ther 13(3):455–468. https://doi.org/10.1089/10430340252792585

    Article  CAS  PubMed  Google Scholar 

  • Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L (2020) Bioprinting: from tissue and organ development to in vitro models. Chem Rev. https://doi.org/10.1021/acs.chemrev.9b00789

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 16(7):2207–2216. https://doi.org/10.1089/ten.tea.2009.0602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2011) Renal tissue engineering with decellularized rhesus monkey kidneys: age-related differences. Tissue Eng Part A 17(23–24):2891–2901. https://doi.org/10.1089/ten.TEA.2010.0714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama KH, Lee CCI, Batchelder CA, Tarantal AF (2013) Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PloS one 8(5):e64134

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakayama KH, Lee CC, Batchelder CA, Tarantal AF (2013) Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS ONE 8(5):e64134. https://doi.org/10.1371/journal.pone.0064134

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohata K, Ott HC (2020) Human-scale lung regeneration based on decellularized matrix scaffolds as a biologic platform. Surg Today 1–11

    Google Scholar 

  • Oliver J (1953) Correlations of structure and function and mechanisms of recovery in acute tubular necrosis. Am J Med 15(4):535–557

    Article  CAS  PubMed  Google Scholar 

  • Orlando G, Baptista P, Birchall M, De Coppi P, Farney A, Guimaraes-Souza NK et al (2011) Regenerative medicine as applied to solid organ transplantation: current status and future challenges. Transpl Int 24(3):223–232

    Article  PubMed  Google Scholar 

  • Orlando G, Farney AC, Iskandar SS, Mirmalek-Sani SH, Sullivan DC, Moran E et al (2012) Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Ann Surg 256(2):363–370. https://doi.org/10.1097/SLA.0b013e31825a02ab

    Article  PubMed  Google Scholar 

  • Orlando G, Booth C, Wang Z, Totonelli G, Ross CL, Moran E et al (2013) Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials 34(24):5915–5925. https://doi.org/10.1016/j.biomaterials.2013.04.033

    Article  CAS  PubMed  Google Scholar 

  • Park KM, Woo HM (2012) Porcine bioengineered scaffolds as new frontiers in regenerative medicine. Transpl Proc 44(4):1146–1150. https://doi.org/10.1016/j.transproceed.2012.03.043

    Article  CAS  Google Scholar 

  • Peloso A, Petrosyan A, Da Sacco S, Booth C, Zambon JP, O’Brien T et al (2015) Renal extracellular matrix scaffolds from discarded kidneys maintain glomerular morphometry and vascular resilience and retains critical growth factors. Transplantation 99(9):1807–1816. https://doi.org/10.1097/tp.0000000000000811

    Article  CAS  PubMed  Google Scholar 

  • Perin L, Giuliani S, Sedrakyan S, Da Sacco S, De Filippo RE (2008) Stem cell and regenerative science applications in the development of bioengineering of renal tissue. Pediatr Res 63(5):467–471. https://doi.org/10.1203/PDR.0b013e3181660653

    Article  PubMed  Google Scholar 

  • Poornejad N, Frost TS, Scott DR, Elton BB, Reynolds PR, Roeder BL et al (2015) Freezing/thawing without cryoprotectant damages native but not decellularized porcine renal tissue. Organogenesis 11(1):30–45. https://doi.org/10.1080/15476278.2015.1022009

    Article  PubMed  PubMed Central  Google Scholar 

  • Poornejad N, Schaumann LB, Buckmiller EM, Momtahan N, Gassman JR, Ma HH et al (2016a) The impact of decellularization agents on renal tissue extracellular matrix. J Biomater Appl 31(4):521–533. https://doi.org/10.1177/0885328216656099

    Article  CAS  PubMed  Google Scholar 

  • Poornejad N, Momtahan N, Salehi AS, Scott DR, Fronk CA, Roeder BL et al (2016b) Efficient decellularization of whole porcine kidneys improves reseeded cell behavior. Biomedical Materials (bristol, England). 11(2):025003. https://doi.org/10.1088/1748-6041/11/2/025003

    Article  CAS  Google Scholar 

  • Rabelink TJ, Little MH (2013) Stromal cells in tissue homeostasis: balancing regeneration and fibrosis. Nat Rev Nephrol 9(12):747–753

    Article  CAS  PubMed  Google Scholar 

  • Rafighdoust A, Shahri NM, Baharara J (2015) Decellularized kidney in the presence of chondroitin sulfate as a natural 3D scaffold for stem cells. Iran J Basic Med Sci 18(8):788–798

    PubMed  PubMed Central  Google Scholar 

  • Rogers SA, Hammerman MR (2001) Transplantation of rat metanephroi into mice. Am J Physiol-Regul Integr Comp Physiol 280(6):R1865–R1869

    Article  CAS  PubMed  Google Scholar 

  • Romagnani P, Remuzzi G (2013) Renal progenitors in non-diabetic and diabetic nephropathies. Trends Endocrinol Metab 24(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C et al (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20(11):2338–2347

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross EA, Abrahamson DR, St. John P, Clapp WL, Williams MJ, Terada N et al (2012) Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis 8(2):49–55

    Google Scholar 

  • Ross EA, Abrahamson DR, St John P, Clapp WL, Williams MJ, Terada N et al (2012) Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis 8(2):49–55. https://doi.org/10.4161/org.20209

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabetkish S, Kajbafzadeh AM, Sabetkish N, Khorramirouz R, Akbarzadeh A, Seyedian SL et al (2015) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix liver scaffolds. J Biomed Mater Res, Part A 103(4):1498–1508. https://doi.org/10.1002/jbm.a.35291

    Article  CAS  Google Scholar 

  • Sabetkish S, Sabetkish N, Talebi MA, Halimi S, Kajbafzadeh AM (2018) The role of nonautologous and autologous adipose-derived mesenchymal stem cell in acute pyelonephritis. Cell Tissue Banking 19(3):301–309. https://doi.org/10.1007/s10561-017-9674-x

    Article  CAS  PubMed  Google Scholar 

  • Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28(3):585–596

    Article  CAS  PubMed  Google Scholar 

  • Salvatori M, Peloso A, Katari R, Orlando G (2014) Regeneration and bioengineering of the kidney: current status and future challenges. Curr Urol Rep 15(1):379

    Article  PubMed  Google Scholar 

  • Sambi M, Chow T, Whiteley J, Li M, Chua S, Raileanu V et al (2017) Acellular mouse kidney ECM can be used as a three-dimensional substrate to test the differentiation potential of embryonic stem cell derived renal progenitors. Stem Cell Rev Rep 13(4):513–531. https://doi.org/10.1007/s12015-016-9712-2

    Article  CAS  PubMed  Google Scholar 

  • Sanechika N, Sawada K, Usui Y, Hanai K, Kakuta T, Suzuki H et al (2011) Development of bioartificial renal tubule devices with lifespan-extended human renal proximal tubular epithelial cells. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association—European Renal Association 26(9):2761–2769. https://doi.org/10.1093/ndt/gfr066

  • Saran R, Robinson B, Abbott KC, Agodoa LY, Albertus P, Ayanian J et al (2017) US renal data system 2016 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis 69(3):A7–A8

    Article  PubMed  PubMed Central  Google Scholar 

  • Sariola H, Ekblom P, Lehtonen E, Saxén L (1983) Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane. Dev Biol 96(2):427–435

    Article  CAS  PubMed  Google Scholar 

  • Soma T, Lerut E, Billiau A, Waer M, Goebels J, Koshiba T et al (2009) An easy and reproducible model of kidney transplantation in rats. Transpl Proc 41(8):3422–3424. https://doi.org/10.1016/j.transproceed.2009.09.027

    Article  CAS  Google Scholar 

  • Song JH, Humes HD (2009) The bioartificial kidney in the treatment of acute kidney injury. Curr Drug Targets 10(12):1227–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JJ, Ott HC (2011) Organ engineering based on decellularized matrix scaffolds. Trends Mol Med 17(8):424–432. https://doi.org/10.1016/j.molmed.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  • Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nature medicine. 19(5):646–651. https://doi.org/10.1038/nm.3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spitzhorn L-S, Rahman MS, Schwindt L, Ho H-T, Wruck W, Bohndorf M et al. (2017) Isolation and molecular characterization of amniotic fluid-derived mesenchymal stem cells obtained from caesarean sections. Stem Cells Int 2017

    Google Scholar 

  • Sullivan DC, Mirmalek-Sani S-H, Deegan DB, Baptista PM, Aboushwareb T, Atala A et al (2012) Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33(31):7756–7764

    Article  CAS  PubMed  Google Scholar 

  • Swanhart LM, Cosentino CC, Diep CQ, Davidson AJ, de Caestecker M, Hukriede NA (2011) Zebrafish kidney development: basic science to translational research. Birth Defects Res C Embryo Today 93(2):141–156. https://doi.org/10.1002/bdrc.20209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takasato M, Er P, Becroft M, Vanslambrouck JM, Stanley E, Elefanty AG et al (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 16(1):118–126

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S et al (2012) Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA 307(11):1169–1177

    Article  CAS  PubMed  Google Scholar 

  • Taylor A, Sharkey J, Harwood R, Scarfe L, Barrow M, Rosseinsky MJ et al. (2019) Multimodal imaging techniques show differences in homing capacity between mesenchymal stromal cells and macrophages in mouse renal injury models. Mol Imag Biol 1–10

    Google Scholar 

  • Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol-Ren Physiol 289(1):F31–F42

    Article  CAS  Google Scholar 

  • Tumlin J, Wali R, Williams W, Murray P, Tolwani AJ, Vinnikova AK et al (2008) Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol 19(5):1034–1040. https://doi.org/10.1681/asn.2007080895

    Article  PubMed  PubMed Central  Google Scholar 

  • Uzarski JS, Xia Y, Belmonte JC, Wertheim JA (2014) New strategies in kidney regeneration and tissue engineering. Curr Opin Nephrol Hypertens 23(4):399–405

    Article  CAS  PubMed  Google Scholar 

  • Uzarski JS, Bijonowski BM, Wang B, Ward HH, Wandinger-Ness A, Miller WM et al (2015) Dual-purpose bioreactors to monitor noninvasive physical and biochemical markers of kidney and liver scaffold recellularization. Tissue Eng Part C Methods 21(10):1032–1043. https://doi.org/10.1089/ten.TEC.2014.0665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villani V, Petrosyan A, De Filippo RE, Da Sacco S (2018) Amniotic fluid stem cells for kidney regeneration. Perinatal stem cells. Elsevier, p 85–95

    Google Scholar 

  • Vishwakarma SK, Bhavani PG, Bardia A, Abkari A, Murthy GS, Venkateshwarulu J et al (2014) Preparation of natural three-dimensional goat kidney scaffold for the development of bioartificial organ. Indian J Nephrol 24(6):372–375. https://doi.org/10.4103/0971-4065.133008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, He J, Pei X, Zhao W (2013) Systematic review and meta-analysis of mesenchymal stem/stromal cells therapy for impaired renal function in small animal models. Nephrology 18(3):201–208

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Chen Y, Yong J, Cui Y, Wang R, Wen L et al (2018) Dissecting the global dynamic molecular profiles of human fetal kidney development by single-cell RNA sequencing. Cell Rep 24(13):3554–67 e3. https://doi.org/10.1016/j.celrep.2018.08.056

  • Willenberg BJ, Oca-Cossio J, Cai Y, Brown AR, Clapp WL, Abrahamson DR et al (2015) Repurposed biological scaffolds: kidney to pancreas. Organogenesis 11(2):47–57. https://doi.org/10.1080/15476278.2015.1067354

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasuoka Y, Fukuyama T, Izumi Y, Nakayama Y, Inoue H, Yanagita K et al (2020) Erythropoietin production by the kidney and the liver in response to severe hypoxia evaluated by Western blotting with deglycosylation. Physiol Rep 8(12):e14485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi S, Ding F, Gong L, Gu X (2017) Extracellular matrix scaffolds for tissue engineering and regenerative medicine. Curr Stem Cell Res Ther 12(3):233–246

    Article  CAS  PubMed  Google Scholar 

  • Yu YL, Shao YK, Ding YQ, Lin KZ, Chen B, Zhang HZ et al (2014) Decellularized kidney scaffold-mediated renal regeneration. Biomaterials 35(25):6822–6828. https://doi.org/10.1016/j.biomaterials.2014.04.074

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdol-Mohammad Kajbafzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabetkish, S., Kajbafzadeh, AM. (2021). The Renal Extracellular Matrix as a Supportive Scaffold for Kidney Tissue Engineering: Progress and Future Considerations. In: Kajbafzadeh, AM. (eds) Decellularization Methods of Tissue and Whole Organ in Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1345. Springer, Cham. https://doi.org/10.1007/978-3-030-82735-9_9

Download citation

Publish with us

Policies and ethics