Skip to main content

Advertisement

Log in

Uncharted waters: nephrogenesis and renal regeneration in fish and mammals

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The major functions of the vertebrate kidney are the removal of metabolic waste and the balance of salt and water. These roles are fulfilled by nephrons, which generally comprise a blood filter (glomerulus) attached to an epithelial tubule. The number of nephrons in the mammalian kidney is set at the end of kidney organogenesis in the late fetal or neonatal period. Subsequent increases in nephron size and functionality then occur during postnatal growth to match increases in body mass/fluid. Because of this strategy of renal development, injuries or birth defects that reduce nephron number lead to a permanent nephron deficit and increase the risk of kidney disease. In contrast to mammals, fish kidneys continue to add nephrons throughout their lifespan. In response to renal injury, fish increase the rate of nephrogenesis, effectively replacing lost nephrons and maintaining their nephron endowment. A better understanding of the remarkable nephrogenic abilities of fish kidneys may lead to innovative ways to restore nephrogenesis in the adult mammalian kidney. This review examines our current understanding of nephrogenesis in mammals and fish and explores possible explanations for why fish, but not mammals, utilize a perpetual nephrogenesis strategy to grow and maintain their kidneys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hentschel H, Elger M (1989) Structure and function of the kidney. In: Kinne RKH (ed) Comparative physiology, vol 1. Karger, Basel, pp 1–240

    Google Scholar 

  2. Dressler GR (2009) Advances in early kidney specification, development and patterning. Development 136:3863–3874

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Reimschuessel R (2001) A fish model of renal regeneration and development. ILAR J 42:285–291

    CAS  PubMed  Google Scholar 

  4. Kobayashi M, Valerius T, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169–181

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bard JB, Gordon A, Sharp L, Sellers WI (2001) Early nephron formation in the developing mouse kidney. J Anat 199:385–392

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cebrian C, Borodo K, Charles N, Herzlinger DA (2004) Morphometric index of the developing murine kidney. Dev Dyn 231:601–608

    PubMed  Google Scholar 

  8. Yuan HT, Tipping PG, Li XZ, Long DA, Woolf AS (2002) Angiopoietin correlates with glomerular capillary loss in anti-glomerular basement membrane glomerulonephritis. Kidney Int 61:2078–2089

    CAS  PubMed  Google Scholar 

  9. Hartman HA, Lai HL, Patterson LT (2007) Cessation of renal morphogenesis in mice. Dev Biol 310:379–387

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gasser B, Mauss Y, Ghnassia JP, Favre R, Kohler M, Yu O, Vonesch JL (1993) A quantitative study of normal nephrogenesis in the human fetus: its implication in the natural history of kidney changes due to low obstructive uropathies. Fetal Diagn Ther 8:371–384

    CAS  PubMed  Google Scholar 

  11. Haycock GB (1998) Development of glomerular filtration and tubular sodium reabsorption in the human fetus and newborn. Br J Urol 81 [Suppl 2]:33–38

    PubMed  Google Scholar 

  12. Fonseca Ferraz ML, Dos Santos AM, Cavellani CL, Rossi RC, Correa RR, Dos Reis MA, de Paula Antunes Teixara V, da Cunha Castro EC (2008) Histochemical and immunohistochemical study of the glomerular development in human fetuses. Pediatr Nephrol 23:257–262

    PubMed  Google Scholar 

  13. Gubhaju L, Black MJ (2005) The baboon as a good model for studies of human kidney development. Pediatr Res 58:505–509

    PubMed  Google Scholar 

  14. Rytand DA (1938) The number and size of mammalian glomeruli as related to the kidney and body weight with method for their enumeration and measurement. Am J Anat 62:507–520

    Google Scholar 

  15. Maluf NS (1995) Kidney of elephants. Anat Rec 242:491–514

    CAS  PubMed  Google Scholar 

  16. McCrory WW (1972) Renal function in the postnatal period. In: Developmental nephrology. Harvard University Press, Cambridge, pp 123–161

    Google Scholar 

  17. Spitzer A, Edelmann CM Jr (1971) Maturational changes in pressure gradients for glomerular filtration. Am J Physiol 221:1431–1435

    CAS  PubMed  Google Scholar 

  18. Satlin LM, Woda CBZ, Schwartz GJ (2003) Development of function in the metanephric kidney. In: Vize PD, Woolf AS, Bard JB (eds) The kidney: from normal development to congenital disease. Academic Press, Amsterdam, pp 278–325

    Google Scholar 

  19. Brenner BM (1985) Nephron adaptation to renal injury or ablation. Am J Physiol 249:F324–F337

    CAS  PubMed  Google Scholar 

  20. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981) Hyperfiltration in remnant nephrons. Am J Physiol 241:F85–F93

    CAS  PubMed  Google Scholar 

  21. Brenner BM, Mackenzie HS (1997) Nephron mass as a risk factor for progression of renal disease. Kidney Int Suppl 63:S124–S127

    CAS  PubMed  Google Scholar 

  22. Vehaskari VM, Woods LL (2005) Prenatal programming of hypertension: lessons from experimental models. J Am Soc Nephrol 16:2545–2556

    CAS  PubMed  Google Scholar 

  23. Hayslett IP (1979) Functional adaptation to reduction in renal mass. Physiol Rev 59:137–164

    CAS  PubMed  Google Scholar 

  24. Johnson G (1851) On some varieties of renal disease, with especial reference to diagnosis and prognosis. Lond J Med 26:109–122

    Google Scholar 

  25. Tseng SCG (1996) Regulation and clinical implications of corneal epithelial stem cells. Mol Biol Rep 23:47–58

    CAS  PubMed  Google Scholar 

  26. Haegebarth A, Clevers H (2009) Wnt signaling, Lgr5, and stem cells in the intestine and skin. Am J Pathol 174:715–721

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hopkins C, Li J, Rae F, Little MH (2009) Stem cell options for kidney disease. J Pathol 217:265–281

    CAS  PubMed  Google Scholar 

  28. Benigni A, Morigi M, Remuzzi G (2010) Kidney regeneration. Lancet 375:1310–1317

    CAS  PubMed  Google Scholar 

  29. Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, McMahon AP, Bonventre JV (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–291

    CAS  PubMed  Google Scholar 

  30. Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114:795–804

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dekel B, Zangi L, Shezen E, Reich-Zeliger S, Eventov-Friedman S, Katchman H, Jacob-Hirsch J, Amariglio N, Rechavi G, Margalit R, Reisner Y (2006) Isolation and characterization of nontubular sca-1 + lin- multipotent stem/progenitor cells from adult mouse kidney. J Am Soc Nephrol 17:3300–3314

    PubMed  Google Scholar 

  32. Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, Camussi G (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166:545–555

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, Pusey C, Wright NA (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195:229–235

    CAS  PubMed  Google Scholar 

  34. Vogetseder A, Palan T, Bacic D, Kaissling B, Le Hir M (2007) Proximal tubular epithelial cells are generated by division of differentiated cells in the healthy kidney. Am J Physiol Cell Physiol 292:C807–C813

    CAS  PubMed  Google Scholar 

  35. Vogetseder A, Picard N, Gaspert A, Walch M, Kaissling B, Le Hir M (2008) Proliferation capacity of the renal proximal tubule involves the bulk of differentiated epithelial cells. Am J Physiol Cell Physiol 294:C22–C28

    CAS  PubMed  Google Scholar 

  36. Fujigaki Y, Sakakima M, Sun Y, Fujikura T, Tsuji T, Yasuda H, Hishida A (2009) Cell division and phenotypic regression of proximal tubular cells in response to uranyl acetate insult in rats. Nephrol Dial Transplant 24:2686–2692

    CAS  PubMed  Google Scholar 

  37. Prescott LF (1966) The normal urinary excretion rates of renal tubular cells, leucocytes and red blood cells. Clin Sci 31:425–435

    CAS  PubMed  Google Scholar 

  38. Croft DN (1970) Body iron loss and cell loss from epithelia. Proc R Soc Med 63:1221–1224

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moghe MA (1945) Development of the mesonephros in a teleostean—Thynnichthys sandkhol. Q J Micr Sci 85:129–151

    Google Scholar 

  40. Fedorova S, Miyamoto R, Harada T, Isogai S, Hashimoto H, Ozato K, Wakamatsu Y (2008) Renal glomerulogenesis in medaka fish, Oryzias latipes. Dev Dyn 237:2342–2352

    PubMed  Google Scholar 

  41. Nash J (1931) The number and size of glomeruli in kidneys of fishes, with observations on the morphology of the renal tubules of fishes. Am J Anat 47:425–445

    Google Scholar 

  42. Mourier JP (1979) Incorporation of 3 H-thymidine in the nephron of Gasterosteus aculeatus L. and its stimulation by methyltestosterone. A high-speed scintillation autoradiographic study. Cell Tissue Res 201:249–262

    CAS  PubMed  Google Scholar 

  43. Reimschuessel R, Bennett RO, May EB, Lipsky MM (1990) Development of newly formed nephrons in the goldfish kidney following hexachlorobutadiene-induced nephrotoxicity. Toxicol Pathol 18:32–38

    CAS  PubMed  Google Scholar 

  44. Reimschuessel R, Bennett RO, May EA, Lipsky MM (1990) Renal tubular cell regeneration, cell proliferation and chronic nephrotoxicity in the goldfish (Carassius auratus) following exposure to a single sublethal dose of hexachlorobutadiene. Dis Aquat Organ 8:211–224

    CAS  Google Scholar 

  45. Hentschel H, Elger M, Dawson M, Renfro JL (2000) Urinary tract. In: Ostrander GK (ed) The laboratory fish. Handbook of experimental animals. Academic Press, London

    Google Scholar 

  46. Wrobel KH, Jouma S (2004) Morphology, development and comparative anatomical evaluation of the testicular excretory pathway in Acipenser. Ann Anat 186:99–113

    PubMed  Google Scholar 

  47. Hentschel H (1991) Developing nephrons in adolescent dogfish, Scyliorhinus caniculus (L.), with reference to ultrastructure of early stages, histogenesis of the renal countercurrent system, and nephron segmentation in marine elasmobranchs. Am J Anat 190:309–333

    CAS  PubMed  Google Scholar 

  48. Elger M, Hentschel H, Litteral J, Wellner M, Kirsch T, Luft FC, Haller H (2003) Nephrogenesis is induced by partial nephrectomy in the elasmobranch Leucoraja erinacea. J Am Soc Nephrol 14:1506–1518

    PubMed  Google Scholar 

  49. Watanabe N, Kato M, Suzuki N, Inoue C, Fedorova S, Hashimoto H, Maruyama S, Matsuo S, Wakamatsu Y (2009) Kidney regeneration through nephron neogenesis in medaka. Dev Growth Differ 51:135–143

    PubMed  Google Scholar 

  50. Ford P (1958) Studies on the development of the kidney of the Pacific pink salmon (Oncorhynchus gorbuscha (Walbaum)). II. Variation in glomerular count of the kidney of the pacific pink salmon. Can J Zool 36:45–47

    Google Scholar 

  51. Carey JR, Judge DS (2000) Longevity records: life spans of mammals, birds, amphibians, reptiles, and fish. Odense University Press, Odense

    Google Scholar 

  52. Haynes G (1991) Mammoths, mastodons, and elephants. Cambridge University Press, Cambridge

    Google Scholar 

  53. Okuda N, Tayasu I, Yanagisawa Y (1998) Determinate growth in a paternal mouth-brooding fish whose reproductive success is limited by buccal capacity. Evol Ecol 12:681–699

    Google Scholar 

  54. Kramer-Zucker AG, Wiessner S, Jensen AM, Drummond IA (2005) Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes. Dev Biol 285:316–329

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Brown JA, Jackson BA, Oliver JA, Henderson IW (1978) Single nephron filtration rates (SNGFR) in the trout. Salmo gairdneri. Validation of the use of ferrocyanide and the effects of environmental salinity. Pflugers Arch 377:101–108

    CAS  PubMed  Google Scholar 

  56. Moriarty RJ, Logan AG, Rankin JC (1978) Measurement of single nephron filtration rate in the kidney of the river lamprey, Lampetra fluviatilis L. J Exp Biol 77:57–71

    CAS  PubMed  Google Scholar 

  57. Marshall EK Jr (1934) Comparative physiology of the kidney in relation to theories of renal secretion. Physiol Rev 14:133–159

    CAS  Google Scholar 

  58. Gray P (1930) The development of the amphibian kidney. I. The development of the mesonephros of rana temporaria. Q J Micr Sci 73:507–545

    Google Scholar 

  59. Fox H (1977) The urinogenital system of reptiles. In: Gans C, Parsons TS (eds) Biology of the reptilia, vol 6. Academic Press, London, pp 1–157

    Google Scholar 

  60. Beuchat CA, Braun EJ (1988) Allometry of the kidney: implications for the ontogeny of osmoregulation. Am J Physiol 255:R760–R767

    CAS  PubMed  Google Scholar 

  61. Solomon SE (1985) The morphology of the kidney of the green turtle (Chelonia mydas L.). J Anat 140:355–369

    PubMed  PubMed Central  Google Scholar 

  62. Burggren WW, Johansen K (1982) Ventricular hemodynamics in the monitor lizard Varanus exanthematicus: pulmonary and systemic pressure separation. J Exp Biol 96:343–354

    Google Scholar 

  63. Holmes B (1975) A reconsideration of the phylogeny of the tetrapod heart. J Morphol 147:209–228

    PubMed  Google Scholar 

  64. Wideman RF Jr (1989) Maturation of glomerular size distribution profiles in domestic fowl (Gallus gallus). J Morphol 201:205–213

    PubMed  Google Scholar 

  65. Koteja P (2004) The evolution of concepts on the evolution of endothermy in birds and mammals. Physiol Biochem Zool 77:1043–1050

    PubMed  Google Scholar 

  66. Woolf AS, Palmer SJ, Snow ML, Fine LG (1990) Creation of a functioning chimeric mammalian kidney. Kidney Int 38:991–997

    CAS  PubMed  Google Scholar 

  67. Armstrong JF, Kaufman MH, van Heyningen V, Bard JB (1993) Embryonic kidney rudiments grown in adult mice fail to mimic the Wilms’ phenotype, but show strain-specific morphogenesis. Exp Nephrol 1:168–174

    CAS  PubMed  Google Scholar 

  68. Rogers SA, Lowell JA, Hammerman NA, Hammerman MR (1998) Transplantation of developing metanephroi into adult rats. Kidney Int 54:27–37

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Davidson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, A.J. Uncharted waters: nephrogenesis and renal regeneration in fish and mammals. Pediatr Nephrol 26, 1435–1443 (2011). https://doi.org/10.1007/s00467-011-1795-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1795-z

Keywords

Navigation