Skip to main content
Log in

Improved Performance of PET Myocardial Perfusion Imaging Compared to SPECT in the Evaluation of Suspected CAD

  • Cardiac PET, CT, and MRI (P Cremer, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has played a central role in the non-invasive evaluation of patients with obstructive coronary artery disease (CAD) for decades. In this review, we discuss the key differences and advantages of positron emission tomography (PET) MPI over SPECT MPI as it relates to the diagnosis, prognosis, as well as clinical decision-making in patients with suspected CAD.

Recent Findings

Stress-induced perfusion abnormalities on SPECT help estimate presence, extent, and location of ischemia and flow-limiting obstructive CAD, help with risk stratification, and serve as a gatekeeper to identify patients who will benefit from downstream revascularization versus medical management. Some of the major limitations of SPECT include soft-tissue attenuation artifacts, underestimation of ischemia due to reliance on relative perfusion assessment, and longer protocols with higher radiation dose when performed with traditional equipment. PET MPI addresses most of these limitations and offers better quality images, higher diagnostic accuracy along with shorter protocols and lower radiation dose to the patient. A special advantage of PET scanning lies in the ability to quantify absolute myocardial blood flow and assess true extent of epicardial involvement along with identifying non-obstructive phenotypes of CAD such as diffuse atherosclerosis and microvascular dysfunction. In addition, stress acquisition at/near peak stress with PET allows us to measure left ventricular ejection fraction reserve and myocardial blood flow reserve, which help with identifying patients at a higher risk of future cardiac events and optimally select candidates for revascularization.

Summary

The several technical advantages of PET MPI position as a superior method to diagnose obstructive and non-obstructive phenotypes of ischemic heart disease affecting the entirety of the coronary circulation offer incremental value for risk stratification and guide post-test management strategy for patients with suspected CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Reproduced from Patel et al. ACC Cardiovasc Imaging. 2022;15(6):1158–9, with permission from Elsevier) [23]

Fig. 2

(Reproduced from Patel et al. ACC Cardiovasc Imaging. 2022;15(9):1635–44, with permission from Elsevier) [5•]

Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of high interest, published recently, have been highlighted as: • Of importance •• Of significant importance

  1. Correction to: Heart Disease and Stroke Statistics-2022 Update: a report from the American Heart Association. Circulation. 2022;146(10):e141.

  2. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362(10):886–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Al Badarin FJ, Chan PS, Spertus JA, Thompson RC, Patel KK, Kennedy KF, et al. Temporal trends in test utilization and prevalence of ischaemia with positron emission tomography myocardial perfusion imaging. Eur Heart J Cardiovasc Imaging. 2020;21(3):318–25.

    Article  PubMed  Google Scholar 

  4. Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, et al. Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol. 2011;58(8):849–60.

    Article  PubMed  Google Scholar 

  5. • Patel KK, Shaw L, Spertus JA, Sperry B, McGhie AI, Kennedy K, et al. Association of sex, reduced myocardial flow reserve, and long-term mortality across spectrum of atherosclerotic disease. JACC Cardiovasc Imaging. 2022;15(9):1635–44. Showed that reduced MBFR is associated with poor prognosis in both men and women, regardless of the extent and severity of co-existing atherosclerosis.

  6. Berman DS, Kang X, Slomka PJ, Gerlach J, de Yang L, Hayes SW, et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol. 2007;14(4):521–8.

    Article  PubMed  Google Scholar 

  7. Nakanishi R, Gransar H, Slomka P, Arsanjani R, Shalev A, Otaki Y, et al. Predictors of high-risk coronary artery disease in subjects with normal SPECT myocardial perfusion imaging. J Nucl Cardiol. 2016;23(3):530–41.

    Article  PubMed  Google Scholar 

  8. Writing Committee M, Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest pain: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2021;78(22):e187–285.

    Article  Google Scholar 

  9. Abbott BG, Case JA, Dorbala S, Einstein AJ, Galt JR, Pagnanelli R, et al. Contemporary cardiac SPECT imaging-innovations and best practices: an information statement from the American Society of Nuclear Cardiology. J Nucl Cardiol. 2018;25(5):1847–60.

    Article  PubMed  Google Scholar 

  10. Murthy VL, Bateman TM, Beanlands RS, Berman DS, Borges-Neto S, Chareonthaitawee P, et al. Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI cardiovascular council and the ASNC. J Nucl Med. 2018;59(2):273–93.

    Article  CAS  PubMed  Google Scholar 

  11. •• Danad I, Raijmakers PG, Driessen RS, Leipsic J, Raju R, Naoum C, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA cardiology. 2017;2(10):1100–7. Controlled prospective head-to-head comparison that showed superior diagnostic accuracy of PET compared to CCTA and SPECT.

  12. • Ziadi MC, Dekemp RA, Williams K, Guo A, Renaud JM, Chow BJ, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19(4):670–80. Myocardial flow reserve offered incremental value to perfusion (summed stress score) for diagnosing multivessel obstructive CAD.

  13. Ziadi MC, Dekemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58(7):740–8.

    Article  PubMed  Google Scholar 

  14. • Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215–24. Initial study showing incremental prognostic value of MBFR on PET over perfusion and LV function assessment.

  15. •• Patel KK, Spertus JA, Chan PS, Sperry BW, Thompson RC, Al Badarin F, et al. Extent of myocardial ischemia on positron emission tomography and survival benefit with early revascularization. J Am Coll Cardiol. 2019;74(13):1645–54. The ischemic threshold for equipoise above which a survival benefit is noted with revascularization is lower on PET (between 5-10%) compared to SPECT MPI.

  16. •• Patel KK, Spertus JA, Chan PS, Sperry BW, Al Badarin F, Kennedy KF, et al. Myocardial blood flow reserve assessed by positron emission tomography myocardial perfusion imaging identifies patients with a survival benefit from early revascularization. Eur Heart J. 2020;41(6):759–68. Patients with global MBFR 1.8 or lower and >10% ischemia had a survival benefit with revascularization compared to medical therapy.

  17. Patel KK, Spertus JA, Arnold SV, Chan PS, Kennedy KF, Jones PG, et al. Ischemia on PET MPI may identify patients with improvement in angina and health status post-revascularization. J Am Coll Cardiol. 2019;74(13):1734–6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wells RG, Marvin B, Poirier M, Renaud J, deKemp RA, Ruddy TD. Optimization of SPECT measurement of myocardial blood flow with corrections for attenuation, motion, and blood binding compared with PET. J Nucl Med. 2017;58(12):2013–9.

    Article  CAS  PubMed  Google Scholar 

  19. Wells RG, Timmins R, Klein R, Lockwood J, Marvin B, deKemp RA, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med. 2014;55(10):1685–91.

    Article  CAS  PubMed  Google Scholar 

  20. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol. 2006;13(1):24–33.

    Article  PubMed  Google Scholar 

  21. Mc Ardle BA, Dowsley TF, deKemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;60(18):1828–37.

    Article  PubMed  Google Scholar 

  22. Takx RA, Blomberg BA, El Aidi H, Habets J, de Jong PA, Nagel E, et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging. 2015;8(1).

  23. Patel FS, Bateman TM, Spertus JA, McGhie AI, Courter SA, Case JA, et al. Reclassification of severe ischemia on PET versus SPECT MPI using a same-patient simultaneous imaging protocol. JACC Cardiovasc Imaging. 2022;15(6):1158–9.

    Article  PubMed  Google Scholar 

  24. Rischpler C, Higuchi T, Fukushima K, Javadi MS, Merrill J, Nekolla SG, et al. Transient ischemic dilation ratio in 82Rb PET myocardial perfusion imaging: normal values and significance as a diagnostic and prognostic marker. J Nucl Med. 2012;53(5):723–30.

    Article  PubMed  Google Scholar 

  25. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med. 2007;48(3):349–58.

    PubMed  Google Scholar 

  26. Hsiao E, Ali B, Blankstein R, Skali H, Ali T, Bruyere J Jr, et al. Detection of obstructive coronary artery disease using regadenoson stress and 82Rb PET/CT myocardial perfusion imaging. J Nucl Med. 2013;54(10):1748–54.

    Article  CAS  PubMed  Google Scholar 

  27. Brodov Y, Gransar H, Dey D, Shalev A, Germano G, Friedman JD, et al. Combined quantitative assessment of myocardial perfusion and coronary artery calcium score by hybrid 82Rb PET/CT improves detection of coronary artery disease. J Nucl Med. 2015;56(9):1345–50.

    Article  CAS  PubMed  Google Scholar 

  28. Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imaging. 2009;2(6):751–8.

    Article  PubMed  Google Scholar 

  29. Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers PG, Lammertsma AA, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol. 2014;64(14):1464-75002E.

    Article  PubMed  Google Scholar 

  30. • Naya M, Murthy VL, Taqueti VR, Foster CR, Klein J, Garber M, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55(2):248–55. Global myocardial flow reserve >1.93 has high negative predictive value for presence of high risk CAD on angiography.

  31. Jespersen L, Abildstrom SZ, Hvelplund A, Galatius S, Madsen JK, Pedersen F, et al. Symptoms of angina pectoris increase the probability of disability pension and premature exit from the workforce even in the absence of obstructive coronary artery disease. Eur Heart J. 2013;34(42):3294–303.

    Article  PubMed  Google Scholar 

  32. Jespersen L, Abildstrom SZ, Hvelplund A, Madsen JK, Galatius S, Pedersen F, et al. Burden of hospital admission and repeat angiography in angina pectoris patients with and without coronary artery disease: a registry-based cohort study. PLoS ONE. 2014;9(4): e93170.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jespersen L, Abildstrom SZ, Hvelplund A, Prescott E. Persistent angina: highly prevalent and associated with long-term anxiety, depression, low physical functioning, and quality of life in stable angina pectoris. Clin Res Cardiol. 2013;102(8):571–81.

    Article  PubMed  Google Scholar 

  34. Jespersen L, Hvelplund A, Abildstrom SZ, Pedersen F, Galatius S, Madsen JK, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33(6):734–44.

    Article  PubMed  Google Scholar 

  35. Schulman-Marcus J, Hartaigh BO, Gransar H, Lin F, Valenti V, Cho I, et al. Sex-specific associations between coronary artery plaque extent and risk of major adverse cardiovascular events: The CONFIRM long-term registry. JACC Cardiovasc Imaging. 2016;9(4):364–72.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schumann CL, Mathew RC, Dean JL, Yang Y, Balfour PC Jr, Shaw PW, et al. Functional and economic impact of INOCA and influence of coronary microvascular dysfunction. JACC Cardiovasc Imaging. 2021;14(7):1369–79.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ford TJ, Yii E, Sidik N, Good R, Rocchiccioli P, McEntegart M, et al. Ischemia and no obstructive coronary artery disease: prevalence and correlates of coronary vasomotion disorders. Circ Cardiovasc Interv. 2019;12(12): e008126.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv. 2015;8(11):1445–53.

    Article  PubMed  Google Scholar 

  39. Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT, et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018;39(10):840–9.

    Article  CAS  PubMed  Google Scholar 

  40. AlBadri A, Bairey Merz CN, Johnson BD, Wei J, Mehta PK, Cook-Wiens G, et al. Impact of abnormal coronary reactivity on long-term clinical outcomes in women. J Am Coll Cardiol. 2019;73(6):684–93.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schindler TH, Dilsizian V. Coronary microvascular dysfunction: clinical considerations and noninvasive diagnosis. JACC Cardiovasc Imaging. 2020;13(1 Pt 1):140–55.

    Article  PubMed  Google Scholar 

  42. Taqueti VR, Di Carli MF. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72(21):2625–41.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schindler TH, Nitzsche EU, Olschewski M, Brink I, Mix M, Prior J, et al. PET-measured responses of MBF to cold pressor testing correlate with indices of coronary vasomotion on quantitative coronary angiography. J Nucl Med. 2004;45(3):419–28.

    PubMed  Google Scholar 

  44. Khuddus MA, Pepine CJ, Handberg EM, Bairey Merz CN, Sopko G, Bavry AA, et al. An intravascular ultrasound analysis in women experiencing chest pain in the absence of obstructive coronary artery disease: a substudy from the National Heart, Lung and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). J Interv Cardiol. 2010;23(6):511–9.

    Article  PubMed  Google Scholar 

  45. Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129(24):2518–27.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Collet C, Sonck J, Vandeloo B, Mizukami T, Roosens B, Lochy S, et al. Measurement of hyperemic pullback pressure gradients to characterize patterns of coronary atherosclerosis. J Am Coll Cardiol. 2019;74(14):1772–84.

    Article  PubMed  Google Scholar 

  47. Gould KL, Nguyen T, Johnson NP. Integrating coronary physiology, longitudinal pressure, and perfusion gradients in CAD: measurements, meaning, and mortality. J Am Coll Cardiol. 2019;74(14):1785–8.

    Article  PubMed  Google Scholar 

  48. Valenta I, Antoniou A, Marashdeh W, Leucker T, Kasper E, Jones SR, et al. PET-measured longitudinal flow gradient correlates with invasive fractional flow reserve in CAD patients. Eur Heart J Cardiovasc Imaging. 2017;18(5):538–48.

    PubMed  Google Scholar 

  49. Bom MJ, Driessen RS, Raijmakers PG, Everaars H, Lammertsma AA, van Rossum AC, et al. Diagnostic value of longitudinal flow gradient for the presence of haemodynamically significant coronary artery disease. Eur Heart J Cardiovasc Imaging. 2019;20(1):21–30.

    Article  PubMed  Google Scholar 

  50. Spertus JA, Jones PG, Maron DJ, O’Brien SM, Reynolds HR, Rosenberg Y, et al. Health-status outcomes with invasive or conservative care in coronary disease. N Engl J Med. 2020;382(15):1408–19.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Patel KK, Patel FS, Bateman TM, Kennedy KF, Peri-Okonny PA, McGhie AI, et al. Relationship between myocardial perfusion imaging abnormalities on positron emission tomography and anginal symptoms, functional status, and quality of life. Circ Cardiovasc Imaging. 2022;15(2): e013592.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cole JP, Ellestad MH. Significance of chest pain during treadmill exercise: correlation with coronary events. Am J Cardiol. 1978;41(2):227–32.

    Article  CAS  PubMed  Google Scholar 

  53. Weiner DA, Ryan TJ, McCabe CH, Chaitman BR, Sheffield LT, Ferguson JC, et al. Prognostic importance of a clinical profile and exercise test in medically treated patients with coronary artery disease. J Am Coll Cardiol. 1984;3(3):772–9.

    Article  CAS  PubMed  Google Scholar 

  54. Christman MP, Bittencourt MS, Hulten E, Saksena E, Hainer J, Skali H, et al. Yield of downstream tests after exercise treadmill testing: a prospective cohort study. J Am Coll Cardiol. 2014;63(13):1264–74.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mark DB, Hlatky MA, Harrell FE Jr, Lee KL, Califf RM, Pryor DB. Exercise treadmill score for predicting prognosis in coronary artery disease. Ann Intern Med. 1987;106(6):793–800.

    Article  CAS  PubMed  Google Scholar 

  56. Mark DB, Shaw L, Harrell FE Jr, Hlatky MA, Lee KL, Bengtson JR, et al. Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease. N Engl J Med. 1991;325(12):849–53.

    Article  CAS  PubMed  Google Scholar 

  57. Shaw LJ, Peterson ED, Shaw LK, Kesler KL, DeLong ER, Harrell FE Jr, et al. Use of a prognostic treadmill score in identifying diagnostic coronary disease subgroups. Circulation. 1998;98(16):1622–30.

    Article  CAS  PubMed  Google Scholar 

  58. Iskandrian AS, Ghods M, Helfeld H, Iskandrian B, Cave V, Heo J. The treadmill exercise score revisited: coronary arteriographic and thallium perfusion correlates. Am Heart J. 1992;124(6):1581–6.

    Article  CAS  PubMed  Google Scholar 

  59. Gibbons RJ, Hodge DO, Berman DS, Akinboboye OO, Heo J, Hachamovitch R, et al. Long-term outcome of patients with intermediate-risk exercise electrocardiograms who do not have myocardial perfusion defects on radionuclide imaging. Circulation. 1999;100(21):2140–5.

    Article  CAS  PubMed  Google Scholar 

  60. Shaw LJ, Wilson PW, Hachamovitch R, Hendel RC, Borges-Neto S, Berman DS. Improved near-term coronary artery disease risk classification with gated stress myocardial perfusion SPECT. JACC Cardiovasc Imaging. 2010;3(11):1139–48.

    Article  PubMed  Google Scholar 

  61. Dresing TJ, Blackstone EH, Pashkow FJ, Snader CE, Marwick TH, Lauer MS. Usefulness of impaired chronotropic response to exercise as a predictor of mortality, independent of the severity of coronary artery disease. Am J Cardiol. 2000;86(6):602–9.

    Article  CAS  PubMed  Google Scholar 

  62. Morris SN, Phillips JF, Jordan JW, McHenry PL. Incidence and significance of decreases in systolic blood pressure during graded treadmill exercise testing. Am J Cardiol. 1978;41(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  63. McHam SA, Marwick TH, Pashkow FJ, Lauer MS. Delayed systolic blood pressure recovery after graded exercise: an independent correlate of angiographic coronary disease. J Am Coll Cardiol. 1999;34(3):754–9.

    Article  CAS  PubMed  Google Scholar 

  64. Abidov A, Hachamovitch R, Hayes SW, Ng CK, Cohen I, Friedman JD, et al. Prognostic impact of hemodynamic response to adenosine in patients older than age 55 years undergoing vasodilator stress myocardial perfusion study. Circulation. 2003;107(23):2894–9.

    Article  PubMed  Google Scholar 

  65. Hage FG, Dean P, Iqbal F, Heo J, Iskandrian AE. A blunted heart rate response to regadenoson is an independent prognostic indicator in patients undergoing myocardial perfusion imaging. J Nucl Cardiol. 2011;18(6):1086–94.

    Article  PubMed  Google Scholar 

  66. Bellam N, Veledar E, Dorbala S, Di Carli MF, Shah S, Eapen D, et al. Prognostic significance of impaired chronotropic response to pharmacologic stress Rb-82 PET. J Nucl Cardiol. 2014;21(2):233–44.

    Article  PubMed  Google Scholar 

  67. Iskandrian AS, Heo J, Lemlek J, Ogilby JD, Untereker WJ, Iskandrian B, et al. Identification of high-risk patients with left main and three-vessel coronary artery disease by adenosine-single photon emission computed tomographic thallium imaging. Am Heart J. 1993;125(4):1130–5.

    Article  CAS  PubMed  Google Scholar 

  68. Bajaj NS, Singh S, Farag A, El-Hajj S, Heo J, Iskandrian AE, et al. The prognostic value of non-perfusion variables obtained during vasodilator stress myocardial perfusion imaging. J Nucl Cardiol. 2016;23(3):390–413.

    Article  PubMed  Google Scholar 

  69. Chow BJ, Wong JW, Yoshinaga K, Ruddy TD, Williams K, deKemp RA, et al. Prognostic significance of dipyridamole-induced ST depression in patients with normal 82Rb PET myocardial perfusion imaging. J Nucl Med. 2005;46(7):1095–101.

    PubMed  Google Scholar 

  70. Diaz LA, Brunken RC, Blackstone EH, Snader CE, Lauer MS. Independent contribution of myocardial perfusion defects to exercise capacity and heart rate recovery for prediction of all-cause mortality in patients with known or suspected coronary heart disease. J Am Coll Cardiol. 2001;37(6):1558–64.

    Article  CAS  PubMed  Google Scholar 

  71. Iskander S, Iskandrian AE. Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol. 1998;32(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  72. Zellweger MJ, Dubois EA, Lai S, Shaw LJ, Amanullah AM, Lewin HC, et al. Risk stratification in patients with remote prior myocardial infarction using rest-stress myocardial perfusion SPECT: prognostic value and impact on referral to early catheterization. J Nucl Cardiol. 2002;9(1):23–32.

    Article  PubMed  Google Scholar 

  73. Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol. 2004;11(2):171–85.

    Article  PubMed  Google Scholar 

  74. Sharir T, Germano G, Kang X, Lewin HC, Miranda R, Cohen I, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med. 2001;42(6):831–7.

    CAS  PubMed  Google Scholar 

  75. Dorbala S, Di Carli MF, Beanlands RS, Merhige ME, Williams BA, Veledar E, et al. Prognostic value of stress myocardial perfusion positron emission tomography: results from a multicenter observational registry. J Am Coll Cardiol. 2013;61(2):176–84.

    Article  PubMed  Google Scholar 

  76. Dorbala S, Hachamovitch R, Curillova Z, Thomas D, Vangala D, Kwong RY, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging. 2009;2(7):846–54.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chang SM, Nabi F, Xu J, Peterson LE, Achari A, Pratt CM, et al. The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk. J Am Coll Cardiol. 2009;54(20):1872–82.

    Article  PubMed  Google Scholar 

  78. Engbers EM, Timmer JR, Ottervanger JP, Mouden M, Knollema S, Jager PL. Prognostic value of coronary artery calcium scoring in addition to single-photon emission computed tomographic myocardial perfusion imaging in symptomatic patients. Circ Cardiovasc Imaging. 2016;9(5).

  79. Schenker MP, Dorbala S, Hong EC, Rybicki FJ, Hachamovitch R, Kwong RY, et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation. 2008;117(13):1693–700.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Patel KK, Peri-Okonny PA, Qarajeh R, Patel FS, Sperry BW, McGhie AI, et al. Prognostic relationship between coronary artery calcium score, perfusion defects, and myocardial blood flow reserve in patients with suspected coronary artery disease. Circ Cardiovasc Imaging. 2022;15(4): e012599.

    Article  PubMed  Google Scholar 

  81. • Patel KK, Al Badarin F, Chan PS, Spertus JA, Courter S, Kennedy KF, et al. Randomized comparison of clinical effectiveness of pharmacologic SPECT and PET MPI in symptomatic CAD patients. JACC Cardiovasc Imaging. 2019;12(9):1821–31. First randomized comparison of clinical effectiveness between PET and SPECT MPI among symptomatic patients with known CAD.

  82. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107(23):2900–7.

    Article  PubMed  Google Scholar 

  83. •• Hachamovitch R, Rozanski A, Shaw LJ, Stone GW, Thomson LE, Friedman JD, et al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J. 2011;32(8):1012–24. Large series showing patients with >12.5-15% ischemia on dual-isotope SPECT had a survival benefit with early revascularization compared to medical therapy, in absence of significant infarct (>10%)/prior MI.

  84. Rozanski A, Miller RJH, Gransar H, Han D, Slomka P, Dey D, et al. Benefit of early revascularization based on inducible ischemia and left ventricular ejection fraction. J Am Coll Cardiol. 2022;80(3):202–15.

    Article  PubMed  Google Scholar 

  85. Azadani PN, Miller RJH, Sharir T, Diniz MA, Hu LH, Otaki Y, et al. Impact of early revascularization on major adverse cardiovascular events in relation to automatically quantified ischemia. JACC Cardiovasc Imaging. 2021;14(3):644–53.

    Article  PubMed  Google Scholar 

  86. Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O’Brien SM, Boden WE, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med. 2020;382(15):1395–407.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ford TJ, Stanley B, Good R, Rocchiccioli P, McEntegart M, Watkins S, et al. Stratified medical therapy using invasive coronary function testing in angina: the CorMicA trial. J Am Coll Cardiol. 2018;72(23 Pt A):2841–55.

  88. Sdringola S, Nakagawa K, Nakagawa Y, Yusuf SW, Boccalandro F, Mullani N, et al. Combined intense lifestyle and pharmacologic lipid treatment further reduce coronary events and myocardial perfusion abnormalities compared with usual-care cholesterol-lowering drugs in coronary artery disease. J Am Coll Cardiol. 2003;41(2):263–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna K. Patel.

Ethics declarations

Conflict of Interest

Krishna K. Patel reports an institutional research grant from Jubliant DraxImage, Inc. The other authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiac PET, CT, and MRI

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, L., Omar, A.M.S. & Patel, K.K. Improved Performance of PET Myocardial Perfusion Imaging Compared to SPECT in the Evaluation of Suspected CAD. Curr Cardiol Rep 25, 281–293 (2023). https://doi.org/10.1007/s11886-023-01851-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01851-4

Keywords

Navigation