Skip to main content
Log in

Choosing Between MRI and CT Imaging in the Adult with Congenital Heart Disease

  • Congenital Heart Disease (RA Krasuski, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Improvements in the outcomes of surgical and catheter-based interventions and medical therapy have led to a growing population of adult patients with congenital heart disease. Adult patients with previously undiagnosed congenital heart disease or those previously palliated or repaired may have challenging echocardiographic examinations. Understanding the distinct anatomic and hemodynamic features of the congenital anomaly and quantifying ventricular function and valvular dysfunction plays an important role in the management of these patients. Rapid advances in imaging technology with magnetic resonance imaging (MRI) and computed tomography angiography (CTA) allow for improved visualization of complex cardiac anatomy in the evaluation of this unique patient population. Although echocardiography remains the most widely used imaging tool to evaluate congenital heart disease, alternative and, at times, complimentary imaging modalities should be considered. When caring for adults with congenital heart disease, it is important to choose the proper imaging study that can answer the clinical question with the highest quality images, lowest risk to the patient, and in a cost-efficient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Baumgartner H, Bonhoeffer P, De Groot NM, et al. ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31(23):2915–57.

    Article  PubMed  Google Scholar 

  2. Kilner PJ, Geva T, Kaemmerer H, Trindade PT, Schwitter J, Webb GD. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J. 2010;31(7):794–805.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(23):e143–263.

    Article  PubMed  Google Scholar 

  4. Bitar R, Leung G, Perng R, et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics. 2006;26(2):513–37.

    Article  PubMed  Google Scholar 

  5. Maceira AM, Prasad SK, Khan M, Pennell DJ. Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J. 2006;27(23):2879–88.

    Article  PubMed  Google Scholar 

  6. Maceira AM, Prasad SK, Khan M, Pennell DJ. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2006;8(3):417–26.

    Article  CAS  PubMed  Google Scholar 

  7. Srichai MB, Lim RP, Wong S, Lee VS. Cardiovascular applications of phase-contrast MRI. AJR Am J Roentgenol. 2009;192(3):662–75.

    Article  PubMed  Google Scholar 

  8. Saraste A, Nekolla S, Schwaiger M. Contrast-enhanced magnetic resonance imaging in the assessment of myocardial infarction and viability. J Nucl Cardiol. 2008;15(1):105–17.

    Article  PubMed  Google Scholar 

  9. Broberg CS, Chugh SS, Conklin C, Sahn DJ, Jerosch-Herold M. Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circ Cardiovasc Imaging. 2010;3(6):727–34.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Febbo JA, Galizia MS, Murphy IG, et al. Congenital heart disease in adults: quantitative and qualitative evaluation of IR FLASH and IR SSFP MRA techniques using a blood pool contrast agent in the steady state and comparison to first pass MRA. Eur J Radiol. 2015;84(10):1921–9.

    Article  PubMed  Google Scholar 

  11. Fenchel M, Saleh R, Dinh H, et al. Juvenile and adult congenital heart disease: time-resolved 3D contrast-enhanced MR angiography. Radiology. 2007;244(2):399–410.

    Article  PubMed  Google Scholar 

  12. Naehle CP, Kaestner M, Muller A, et al. First-pass and steady-state MR angiography of thoracic vasculature in children and adolescents. J Am Coll Cardiol Img. 2010;3(5):504–13.

    Article  Google Scholar 

  13. Potthast S, Mitsumori L, Stanescu LA, et al. Measuring aortic diameter with different MR techniques: comparison of three-dimensional (3D) navigated steady-state free-precession (SSFP), 3D contrast-enhanced magnetic resonance angiography (CE-MRA), 2D T2 black blood, and 2D cine SSFP. J Magn Reson Imaging. 2010;31(1):177–84.

    Article  PubMed  Google Scholar 

  14. Jeung MY, Germain P, Croisille P. El ghannudi S, Roy C, Gangi A. Myocardial tagging with MR imaging: overview of normal and pathologic findings. Radiographics. 2012;32(5):1381–98.

    Article  PubMed  Google Scholar 

  15. Vasanawala SS, Hanneman K, Alley MT, Hsiao A. Congenital heart disease assessment with 4D flow MRI. J Magn Reson Imaging. 2015;42(4):870–86.

    Article  PubMed  Google Scholar 

  16. Saremi F, Grizzard JD, Kim RJ. Optimizing cardiac MR imaging: practical remedies for artifacts. Radiographics. 2008;28(4):1161–87.

    Article  PubMed  Google Scholar 

  17. Boilson BA, Wokhlu A, Acker NG, et al. Safety of magnetic resonance imaging in patients with permanent pacemakers: a collaborative clinical approach. J Interv Card Electrophysiol. 2012;33(1):59–67.

    Article  PubMed  Google Scholar 

  18. Agarwal R, Brunelli SM, Williams K, Mitchell MD, Feldman HI, Umscheid CA. Gadolinium-based contrast agents and nephrogenic systemic fibrosis: a systematic review and meta-analysis. Nephrol Dial Transplant. 2009;24(3):856–63.

    Article  CAS  PubMed  Google Scholar 

  19. Bardo DM, Brown P. Cardiac multidetector computed tomography: basic physics of image acquisition and clinical applications. Curr Cardiol Rev. 2008;4(3):231–43.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bardo DM, Kachenoura N, Newby B, Lang RM, Mor-Avi V. Multidetector computed tomography evaluation of left ventricular volumes: sources of error and guidelines for their minimization. J Cardiovasc Comput Tomogr. 2008;2(4):222–30.

    Article  PubMed  Google Scholar 

  21. Otero HJ, Steigner ML, Rybicki FJ. The "post-64" era of coronary CT angiography: understanding new technology from physical principles. Radiol Clin N Am. 2009;47(1):79–90.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cook SC, Raman SV. Multidetector computed tomography in the adolescent and young adult with congenital heart disease. J Cardiovasc Comput Tomogr. 2008;2(1):36–49.

    Article  PubMed  Google Scholar 

  23. Ghoshhajra BB, Sidhu MS, El-Sherief A, et al. Adult congenital heart disease imaging with second-generation dual-source computed tomography: initial experiences and findings. Congenit Heart Dis. 2012;7(6):516–25. This paper highlights the utility of dual-source CTA in patients with congenital heart disease. This modality allows for superior spatial resolution with lower radiation doses and shorter scan times than MRI.

  24. Powell AJ, Maier SE, Chung T, Geva T. Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation. Pediatr Cardiol. 2000;21(2):104–10.

    Article  CAS  PubMed  Google Scholar 

  25. Powell AJ, Tsai-Goodman B, Prakash A, Greil GF, Geva T. Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry for quantification of atrial shunts. Am J Cardiol. 2003;91(12):1523–5. A1529.

    Article  PubMed  Google Scholar 

  26. Kafka H, Mohiaddin RH. Cardiac MRI and pulmonary MR angiography of sinus venosus defect and partial anomalous pulmonary venous connection in cause of right undiagnosed ventricular enlargement. AJR Am J Roentgenol. 2009;192(1):259–66.

    Article  PubMed  Google Scholar 

  27. Ferrari VA, Scott CH, Holland GA, Axel L, Sutton MS. Ultrafast three-dimensional contrast-enhanced magnetic resonance angiography and imaging in the diagnosis of partial anomalous pulmonary venous drainage. J Am Coll Cardiol. 2001;37(4):1120–8.

    Article  CAS  PubMed  Google Scholar 

  28. Festa P, Ait-Ali L, Cerillo AG, De Marchi D, Murzi B. Magnetic resonance imaging is the diagnostic tool of choice in the preoperative evaluation of patients with partial anomalous pulmonary venous return. Int J Cardiovasc Imaging. 2006;22(5):685–93.

    Article  PubMed  Google Scholar 

  29. Prompona M, Muehling O, Naebauer M, Schoenberg SO, Reiser M, Huber A. MRI for detection of anomalous pulmonary venous drainage in patients with sinus venosus atrial septal defects. Int J Cardiovasc Imaging. 2011;27(3):403–12.

    Article  PubMed  Google Scholar 

  30. Dyer KT, Hlavacek AM, Meinel FG, et al. Imaging in congenital pulmonary vein anomalies: the role of computed tomography. Pediatr Radiol. 2014;44(9):1158–68. quiz 1155–1157.

    Article  PubMed  Google Scholar 

  31. Meyersohn NM, Ghemigian K, Shapiro MD, Shah SV, Ghoshhajra BB, Ferencik M. Role of computed tomography in assessment of the thoracic aorta. Curr Treat Options Cardiovasc Med. 2015;17(8):395.

    PubMed  Google Scholar 

  32. Karaosmanoglu AD, Khawaja RD, Onur MR, Kalra MK. CT and MRI of aortic coarctation: pre- and postsurgical findings. AJR Am J Roentgenol. 2015;204(3):W224–33.

    Article  PubMed  Google Scholar 

  33. Goubergrits L, Riesenkampff E, Yevtushenko P, et al. MRI-based computational fluid dynamics for diagnosis and treatment prediction: clinical validation study in patients with coarctation of aorta. J Magn Reson Imaging. 2015;41(4):909–16.

    Article  PubMed  Google Scholar 

  34. Kenny D, Hamilton MC, Martin RP. Stainless steel stents and magnetic resonance imaging looking into a black hole. J Am Coll Cardiol. 2009;54(23):2202–3. author reply 2203.

    Article  PubMed  Google Scholar 

  35. Buechel ER, Dave HH, Kellenberger CJ, et al. Remodelling of the right ventricle after early pulmonary valve replacement in children with repaired tetralogy of Fallot: assessment by cardiovascular magnetic resonance. Eur Heart J. 2005;26(24):2721–7.

    Article  PubMed  Google Scholar 

  36. Dave HH, Buechel ER, Dodge-Khatami A, et al. Early insertion of a pulmonary valve for chronic regurgitation helps restoration of ventricular dimensions. Ann Thorac Surg. 2005;80(5):1615–20. discussion 1620–1611.

    Article  PubMed  Google Scholar 

  37. Frigiola A, Tsang V, Bull C, et al. Biventricular response after pulmonary valve replacement for right ventricular outflow tract dysfunction: is age a predictor of outcome? Circulation. 2008;118(14 Suppl):S182–90.

    Article  PubMed  Google Scholar 

  38. Geva T, Gauvreau K, Powell AJ, et al. Randomized trial of pulmonary valve replacement with and without right ventricular remodeling surgery. Circulation. 2010;122(11 Suppl):S201–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee C, Kim YM, Lee CH, et al. Outcomes of pulmonary valve replacement in 170 patients with chronic pulmonary regurgitation after relief of right ventricular outflow tract obstruction: implications for optimal timing of pulmonary valve replacement. J Am Coll Cardiol. 2012;60(11):1005–14.

    Article  PubMed  Google Scholar 

  40. Oosterhof T, van Straten A, Vliegen HW, et al. Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation. 2007;116(5):545–51.

    Article  PubMed  Google Scholar 

  41. Therrien J, Provost Y, Merchant N, Williams W, Colman J, Webb G. Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol. 2005;95(6):779–82.

    Article  PubMed  Google Scholar 

  42. Clarke CJ, Gurka MJ, Norton PT, Kramer CM, Hoyer AW. Assessment of the accuracy and reproducibility of RV volume measurements by CMR in congenital heart disease. JACC Cardiovasc Imaging. 2012;5(1):28–37.

    Article  PubMed  Google Scholar 

  43. Broberg CS, Aboulhosn J, Mongeon FP, et al. Prevalence of left ventricular systolic dysfunction in adults with repaired tetralogy of Fallot. Am J Cardiol. 2011;107(8):1215–20.

    Article  PubMed  Google Scholar 

  44. Ghai A, Silversides C, Harris L, Webb GD, Siu SC, Therrien J. Left ventricular dysfunction is a risk factor for sudden cardiac death in adults late after repair of tetralogy of Fallot. J Am Coll Cardiol. 2002;40(9):1675–80.

    Article  PubMed  Google Scholar 

  45. Geva T, Sandweiss BM, Gauvreau K, Lock JE, Powell AJ. Factors associated with impaired clinical status in long-term survivors of tetralogy of Fallot repair evaluated by magnetic resonance imaging. J Am Coll Cardiol. 2004;43(6):1068–74.

    Article  PubMed  Google Scholar 

  46. Babu-Narayan SV, Kilner PJ, Li W, et al. Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation. 2006;113(3):405–13.

    Article  CAS  PubMed  Google Scholar 

  47. Grothoff M, Spors B, Abdul-Khaliq H, Gutberlet M. Evaluation of postoperative pulmonary regurgitation after surgical repair of tetralogy of Fallot: comparison between Doppler echocardiography and MR velocity mapping. Pediatr Radiol. 2008;38(2):186–91.

    Article  PubMed  Google Scholar 

  48. Li W, Davlouros PA, Kilner PJ, et al. Doppler-echocardiographic assessment of pulmonary regurgitation in adults with repaired tetralogy of Fallot: comparison with cardiovascular magnetic resonance imaging. Am Heart J. 2004;147(1):165–72.

    Article  PubMed  Google Scholar 

  49. Mercer-Rosa L, Yang W, Kutty S, Rychik J, Fogel M, Goldmuntz E. Quantifying pulmonary regurgitation and right ventricular function in surgically repaired tetralogy of Fallot: a comparative analysis of echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging. 2012;5(5):637–43.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gorter TM, van Melle JP, Freling HG, et al. Pulmonary regurgitant volume is superior to fraction using background-corrected phase contrast MRI in determining the severity of regurgitation in repaired tetralogy of Fallot. Int J Cardiovasc Imaging. 2015;31(6):1169–77.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cawley PJ, Maki JH, Otto CM. Cardiovascular magnetic resonance imaging for valvular heart disease: technique and validation. Circulation. 2009;119(3):468–78.

    Article  PubMed  Google Scholar 

  52. Phillips SD, Bonnichsen CR, McLeod CJ, Ammash NM, Burkhart HM, Connolly HM. Adults with congenital heart disease and previous intervention. Curr Probl Cardiol. 2013;38(8):293–357.

    Article  PubMed  Google Scholar 

  53. Babu-Narayan SV, Goktekin O, Moon JC, et al. Late gadolinium enhancement cardiovascular magnetic resonance of the systemic right ventricle in adults with previous atrial redirection surgery for transposition of the great arteries. Circulation. 2005;111(16):2091–8.

    Article  PubMed  Google Scholar 

  54. Giardini A, Lovato L, Donti A, et al. Relation between right ventricular structural alterations and markers of adverse clinical outcome in adults with systemic right ventricle and either congenital complete (after Senning operation) or congenitally corrected transposition of the great arteries. Am J Cardiol. 2006;98(9):1277–82.

    Article  PubMed  Google Scholar 

  55. Winter MM, Bernink FJ, Groenink M, et al. Evaluating the systemic right ventricle by CMR: the importance of consistent and reproducible delineation of the cavity. J Cardiovasc Magn Reson. 2008;10:40.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Patel S, Shah D, Chintala K, Karpawich PP. Atrial baffle problems following the Mustard operation in children and young adults with dextro-transposition of the great arteries: the need for improved clinical detection in the current era. Congenit Heart Dis. 2011;6(5):466–74.

    Article  PubMed  Google Scholar 

  57. Kreutzer C, De Vive J, Oppido G, et al. Twenty-five-year experience with rastelli repair for transposition of the great arteries. J Thorac Cardiovasc Surg. 2000;120(2):211–23.

    Article  CAS  PubMed  Google Scholar 

  58. Angeli E, Formigari R, Pace Napoleone C, et al. Long-term coronary artery outcome after arterial switch operation for transposition of the great arteries. Eur J Cardiothorac Surg. 2010;38(6):714–20.

    Article  PubMed  Google Scholar 

  59. Tobler D, Yalonetsky S, Crean AM, et al. Right heart characteristics and exercise parameters in adults with Ebstein anomaly: new perspectives from cardiac magnetic resonance imaging studies. Int J Cardiol. 2013;165(1):146–50.

    Article  PubMed  Google Scholar 

  60. Yalonetsky S, Tobler D, Greutmann M, et al. Cardiac magnetic resonance imaging and the assessment of ebstein anomaly in adults. Am J Cardiol. 2011;107(5):767–73.

    Article  PubMed  Google Scholar 

  61. Brown ML, Dearani JA, Danielson GK, et al. The outcomes of operations for 539 patients with Ebstein anomaly. J Thorac Cardiovasc Surg. 2008;135(5):1120–36. 1136 e1121-1127.

    Article  PubMed  Google Scholar 

  62. Raju V, Dearani JA, Burkhart HM, et al. Right ventricular unloading for heart failure related to Ebstein malformation. Ann Thorac Surg. 2014;98(1):167–73. discussion 173–164.

    Article  PubMed  Google Scholar 

  63. Varma C, Warr MR, Hendler AL, Paul NS, Webb GD, Therrien J. Prevalence of "silent" pulmonary emboli in adults after the Fontan operation. J Am Coll Cardiol. 2003;41(12):2252–8.

    Article  PubMed  Google Scholar 

  64. Grewal J, Al Hussein M, Feldstein J, et al. Evaluation of silent thrombus after the Fontan operation. Congenit Heart Dis. 2013;8(1):40–7.

    Article  PubMed  Google Scholar 

  65. Mavroudis C, Backer CL, Deal BJ. Late reoperations for Fontan patients: state of the art invited review. Eur J Cardiothorac Surg. 2008;34(5):1034–40.

    Article  PubMed  Google Scholar 

  66. Be’eri E, Maier SE, Landzberg MJ, Chung T, Geva T. In vivo evaluation of Fontan pathway flow dynamics by multidimensional phase-velocity magnetic resonance imaging. Circulation. 1998;98(25):2873–82.

    Article  PubMed  Google Scholar 

  67. Sundareswaran KS, Haggerty CM, de Zelicourt D, et al. Visualization of flow structures in Fontan patients using 3-dimensional phase contrast magnetic resonance imaging. J Thorac Cardiovasc Surg. 2012;143(5):1108–16.

    Article  PubMed  PubMed Central  Google Scholar 

  68. de Leval MR, Dubini G, Migliavacca F, et al. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections. J Thorac Cardiovasc Surg. 1996;111(3):502–13.

    Article  PubMed  Google Scholar 

  69. Asrani SK, Warnes CA, Kamath PS. Hepatocellular carcinoma after the Fontan procedure. N Engl J Med. 2013;368(18):1756–7. Although not the first case reports of hepatocellular carcinoma in patients with Fontan circulation, this report provided further evidence that longstanding liver congestion and cirrhosis in Fontan patients is a risk factor for hepatocellular carcinoma and routine surveillance is necessary in these patients.

  70. Elder RW, Parekh S, Book WM. More on hepatocellular carcinoma after the Fontan procedure. N Engl J Med. 2013;369(5):490.

    Article  CAS  PubMed  Google Scholar 

  71. Saliba T, Dorkhom S, O’Reilly EM, Ludwig E, Gansukh B, Abou-Alfa GK. Hepatocellular carcinoma in two patients with cardiac cirrhosis. Eur J Gastroenterol Hepatol. 2010;22(7):889–91.

    Article  PubMed  Google Scholar 

  72. Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging. 2013;37(3):544–55.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Poterucha JT, Johnson JN, Qureshi MY, et al. Magnetic resonance elastography: a novel technique for the detection of hepatic fibrosis and hepatocellular carcinoma after the Fontan operation. Mayo Clin Proc. 2015;90(7):882–94.

    Article  PubMed  Google Scholar 

  74. Serai SD, Wallihan DB, Venkatesh SK, et al. Magnetic resonance elastography of the liver in patients status-post Fontan procedure: feasibility and preliminary results. Congenit Heart Dis. 2014;9(1):7–14.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wallihan DB, Podberesky DJ, Marino BS, Sticka JS, Serai S. Relationship of MR elastography determined liver stiffness with cardiac function after Fontan palliation. J Magn Reson Imaging. 2014;40(6):1328–35.

    Article  PubMed  Google Scholar 

  76. Bluemke DA, Achenbach S, Budoff M, et al. Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the American Heart Association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation. 2008;118(5):586–606.

    Article  PubMed  Google Scholar 

  77. Miller JA, Anavekar NS, El Yaman MM, Burkhart HM, Miller AJ, Julsrud PR. Computed tomographic angiography identification of intramural segments in anomalous coronary arteries with interarterial course. Int J Cardiovasc Imaging. 2012;28(6):1525–32.

    Article  PubMed  Google Scholar 

  78. Torres FS, Nguyen ET, Dennie CJ, et al. Role of MDCT coronary angiography in the evaluation of septal vs interarterial course of anomalous left coronary arteries. J Cardiovasc Comput Tomogr. 2010;4(4):246–54.

    Article  PubMed  Google Scholar 

  79. Opolski MP, Pregowski J, Kruk M, et al. Prevalence and characteristics of coronary anomalies originating from the opposite sinus of Valsalva in 8,522 patients referred for coronary computed tomography angiography. Am J Cardiol. 2013;111(9):1361–7.

    Article  PubMed  Google Scholar 

  80. Angelini P, Cheong B. Left coronary artery from the right coronary sinus: what can CT angiography tell us? J Cardiovasc Comput Tomogr. 2010;4(4):255–7.

    Article  PubMed  Google Scholar 

  81. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32.

    Article  PubMed  Google Scholar 

  82. Zhou K, Kong L, Wang Y, et al. Coronary artery fistula in adults: evaluation with dual-source CT coronary angiography. Br J Radiol. 2015;88(1049):20140754.

    Article  CAS  PubMed  Google Scholar 

  83. Saboo SS, Juan YH, Khandelwal A, et al. MDCT of congenital coronary artery fistulas. AJR Am J Roentgenol. 2014;203(3):W244–52.

    Article  PubMed  Google Scholar 

  84. Ishida M, Sakuma H. Coronary MR angiography revealed: how to optimize image quality. Magn Reson Imaging Clin N Am. 2015;23(1):117–25.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Ammash.

Ethics declarations

Conflict of Interest

Crystal Bonnichsen and Naser Ammash declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Congenital Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnichsen, C., Ammash, N. Choosing Between MRI and CT Imaging in the Adult with Congenital Heart Disease. Curr Cardiol Rep 18, 45 (2016). https://doi.org/10.1007/s11886-016-0717-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-016-0717-x

Keywords

Navigation