Skip to main content
Log in

Contrast-enhanced magnetic resonance imaging in the assessment of myocardial infarction and viability

  • Advances in Nonnuclear Imaging Technologies
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Contrast-enhanced magnetic resonance imaging (MRI) can be used to visualize the transmural extent of myocardial infarction with high spatial resolution. The aim of this review is to provide an overview of the use of contrast-enhanced MRI for characterization of ischemic myocardial injury in comparison to other imaging methods and its relevance in clinical syndromes related to coronary artery disease. Infarcted myocardium appears hyperenhanced compared with normal myocardium when imaged by a delayed-enhancement MRI technique with the use of an inversion-prepared T1-weighted sequence after injection of gadolinium chelates, such as gadolinium-diethylenetriamine pentaacetic acid. Experimental and clinical studies indicate that the extent of delayed enhancement is reproducible and closely correlates with the size of myocardial necrosis or infarct scar as determined by established in vitro and in vivo methods. Furthermore, MRI appears to be more sensitive than other imaging methods in detecting small subendocardial infarctions. The transmural extent of delayed enhancement potentially predicts functional outcome after revascularization in acute myocardial infarction and chronic ischemic heart disease, indicating that it can accurately discriminate between infarction and dysfunctional but viable myocardium. Further experience from clinical trials is needed to understand the association of delayed enhancement with clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975;56:978–85.

    Article  PubMed  CAS  Google Scholar 

  2. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 1982;66:1146–9.

    PubMed  CAS  Google Scholar 

  3. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989;117:211–21.

    Article  PubMed  CAS  Google Scholar 

  4. Wijns W, Vatner SF, Camici PG. Hibernating myocardium. N Engl J Med 1998;339:173–81.

    Article  PubMed  CAS  Google Scholar 

  5. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging. Circulation 2003;108: 1404–18.

    Article  PubMed  Google Scholar 

  6. Elsasser A, Schlepper M, Klovekorn WP, Cai WJ, Zimmermann R, Muller KD, et al. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation 1997;96:2920–31.

    PubMed  CAS  Google Scholar 

  7. Beanlands RS, Hendry PJ, Masters RG, deKemp RA, Woodend K, Ruddy TD. Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 1998; 98:II51–6.

    PubMed  CAS  Google Scholar 

  8. Allman KC, Shaw LJ, Hachmovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 2002;39:1151–8.

    Article  PubMed  Google Scholar 

  9. Haas F, Haehmel CJ, Picker W, Nekolla S, Martinoff S, Meisner H, et al. Preoperative positrom emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 1997; 30:1693–700.

    Article  PubMed  CAS  Google Scholar 

  10. Gersh BJ, Anderson JL. Thrombolysis and myocardial salvage. Results of clinical trials and the animal paradigm—paradoxic or predictable? Circulation 1993;88:296–306.

    PubMed  CAS  Google Scholar 

  11. Miller TD, Christian TF, Hopfenspirger MR, Hodge DO, Gersh BJ, Gibbons RJ. Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts subsequent mortality. Circulation 1995;92:334–41.

    PubMed  CAS  Google Scholar 

  12. Schomig A, Kastrati A, Dirschinger J, Mehilli J, Schricke U, Pache J, et al. Coronary stenting plus platelet glycoprotein IIb/IIIa blockade compared with tissue plasminogen activator in acute myocardial infarction. Stent versus Thrombolysis for Occluded Coronary Arteries in Patients with Acute Myocardial Infarction Study Investigators. N Engl J Med 2000;343:385–91.

    Article  PubMed  CAS  Google Scholar 

  13. Kastrati A, Mehilli J, Dirschinger J, Schricke U, Neverve J, Pache J, et al. Stent versus Thrombolysis for Occluded Coronary arteries in Patients With Acute Myocardial Infarction (STOPAMI-2) Study. Myocardial salvage after coronary stenting plus abciximab versus fibrinolysis plus abciximab in patients with acute myocardial infarction: a randomised trial. Lancet 2002;359:920–5.

    Article  PubMed  CAS  Google Scholar 

  14. Gibbons RJ, Valeti US, Araoz PA, Jaffe AS. The quantification of infarct size. J Am Coll Cardiol 2004;44:1533–42.

    Article  PubMed  Google Scholar 

  15. Schinkel AF, Poldermans D, Elhendy A, Bax JJ. Prognostic role of dobutamine stress echocardiography in myocardial viability. Curr Opin Cardiol 2006;21:443–9.

    Article  PubMed  Google Scholar 

  16. Knuuti J, Schelbert HR, Bax JJ. The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med Mol Imaging 2002;29:1257–66.

    Article  PubMed  Google Scholar 

  17. Eichstaedt HW, Felix R, Dougherty FC, Langer M, Rutsch W, Schmutzler H. Magnetic resonance imaging (MRI) in different stages of myocardial infarction using the contrast agent gadolinium-DTPA. Clin Cardiol 1986;9:527–35.

    Article  PubMed  CAS  Google Scholar 

  18. McNamara MT, Tscholakoff D, Revel D, Soulen R, Schechtmann N, Botvinick E, et al. Differentiation of reversible and irreversible myocardial injurty by MR imaging with and without gadolinium-DTPA. Radiology 1986;158:765–9.

    PubMed  CAS  Google Scholar 

  19. Rehr RB, Peshock RM, Malloy CR, Keller AM, Parkey RW, Buja LM, et al. Improved in vivo magnetic resonance imaging of acute myocardial infarction after intravenous paramagnetic contrast agent administration. Am J Cardiol 1986;57:864–8.

    Article  PubMed  CAS  Google Scholar 

  20. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1990; 100:1992–2002.

    Google Scholar 

  21. Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology 2001;218:215–23.

    PubMed  CAS  Google Scholar 

  22. Sievers B, Elliott MD, Hurwitz LM, Albert TS, Klem I, Rehwald WG, et al. Rapid detection of myocardial infarction by subsecond, free-breathing delayed contrast-enhancement cardiovascular magnetic resonance. Circulation 2007;115:236–44.

    Article  PubMed  Google Scholar 

  23. Judd RM, Lugo-Olivieri CH, Arai M, Kondo T, Croisille P, Lima JA, et al. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 1995;92:1902–10.

    PubMed  CAS  Google Scholar 

  24. Kim RJ, Chen EL, Lima JA, Judd RM. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 1996;94:3318–26.

    PubMed  CAS  Google Scholar 

  25. Rehwald WG., Fieno DS, Chen EL, Kim RJ, Judd RM. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 2002;105:224–9.

    Article  PubMed  Google Scholar 

  26. Klein C, Nekolla SG, Balbach T, Schnackenburg B, Nagel E, Fleck E, et al. The influence of myocardial blood flow and volume of distribution on late Gd-DTPA kinetics in ischemic heart failure. J Magn Reson Imaging 2004;20:588–93.

    Article  PubMed  Google Scholar 

  27. Klein C, Schmal TR, Nekolla SG, Schnackenburg B, Fleck E, Nagel E. Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. J Cardiovasc Magn Reson 2007;9:653–8.

    Article  PubMed  Google Scholar 

  28. Weinmann HJ, Laniado M, Mutzel W. Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 1984;16:167–72.

    PubMed  CAS  Google Scholar 

  29. Schaefer S, Malloy CR, Katz J, Parkey RW, Buja LM, Willerson JT, et al. Gadolinium-DTPA-enhanced nuclear magnetic resonance imaging of reperfused myocardium: identification of the myocardial bed at risk. J Am Coll Cardiol 1988;12:1064–72.

    Article  PubMed  CAS  Google Scholar 

  30. Flacke SJ, Fischer SE, Lorenz CH. Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium in vivo: normal distribution and elevation in acute and chronic infarction. Radiology 2001;218:703–10.

    PubMed  CAS  Google Scholar 

  31. Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM. Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 2000;36:1985–91.

    Article  PubMed  CAS  Google Scholar 

  32. Barkhausen J, Ebert W, Debatin JF, Weinmann HJ. Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits. J Am Coll Cardiol 2002;39:1392–8.

    Article  PubMed  CAS  Google Scholar 

  33. Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 2003;361:374–9.

    Article  PubMed  Google Scholar 

  34. Gerber BL, Rochitte CE, Melin JA, McVeigh ER, Bluemke DA, Wu KC, et al. Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation 2000;101:2734–41.

    PubMed  CAS  Google Scholar 

  35. Hillenbrand HB, Kim RJ, Parker MA, Fieno DS, Judd RM. Early assessment of myocardial salvage by contrast-enhanced magnetic resonance imaging. Circulation 2000;102:1678–83.

    PubMed  CAS  Google Scholar 

  36. Fieno DS, Hillenbrand HB, Rehwald WG, Harris KR, Decker RS, Parker MA, et al. Infarct resorption, compensatory hypertrophy, and differing patterns of ventricular remodeling following myocardial infarctions of varying size. J Am Coll Cardiol 2004;43:2124–31.

    Article  PubMed  Google Scholar 

  37. Rochitte CE, Lima JA, Bluemke DA, Reeder SB, McVeigh ER, Furuta T, et al. Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 1998;98:1006–14.

    PubMed  CAS  Google Scholar 

  38. Saeed M, Lund G, Wendland MF, Bremerich J, Weinmann H, Higgins CB. Magnetic resonance characterization of the periinfarction zone of reperfused myocardial infarction with necrosisspecific and extracellular nonspecific contrast media. Circulation 2001;103:871–6.

    PubMed  CAS  Google Scholar 

  39. Rogers WJ Jr, Kramer CM, Geskin G, Hu YL, Theobald TM, Vido DA, et al. Early contrast-enhanced MRI predicts late functional recovery after reperfused myocardial infarction. Circulation 1999;99:744–50.

    PubMed  Google Scholar 

  40. Kramer CM, Rogers WJ Jr, Mankad S, Theobald TM, Pakstis DL, Hu YL. Contractile reserve and contrast uptake pattern by magnetic resonance imaging and functional recovery after reperfused myocardial infarction. J Am Coll Cardiol 2000;36:1835–40.

    Article  PubMed  CAS  Google Scholar 

  41. Sosnovik DE, Schellenberger EA, Nahrendorf M, Novikov MS, Matsui T, Dai G, et al. Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med 2005;54:718–24.

    Article  PubMed  Google Scholar 

  42. Lima JA, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA. Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI Potential mechanisms. Circulation 1995;92:1117–25.

    PubMed  CAS  Google Scholar 

  43. Rezkalla SH, Kloner RA. No-reflow phenomenon. Circulation 2002;105:656–62.

    Article  PubMed  Google Scholar 

  44. Gerber BL, Garot J, Bluemke DA, Wu KC, Lima JA. Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation 2002;106:1083–9.

    Article  PubMed  Google Scholar 

  45. Baks T, van Geuns RJ, Biagini E, Wielopolski P, Mollet NR, Cademartiri F, et al. Effects of primary angioplasty for acute myocardial infarction on early and late infarct size and left ventricular wall characteristics. J Am Coll Cardiol 2006;47:40–4.

    Article  PubMed  Google Scholar 

  46. Shapiro MD, Nieman K, Nasir K, Nomura CH, Sarwar A, Ferencik M, et al. Utility of cardiovascular magnetic resonance to predict left ventricular recovery after primary percutaneous coronary intervention for patients presenting with acute ST-segment elevation myocardial infarction. Am J Cardiol 2007;100:211–6.

    Article  PubMed  Google Scholar 

  47. Kim RJ, Shah DJ, Judd RM. How we perform delayed enhancement imaging. J Cardiovasc Magn Reson 2003;5:505–14.

    Article  PubMed  Google Scholar 

  48. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;343:1445–53.

    Article  PubMed  CAS  Google Scholar 

  49. Mahrholdt H, Wagner A, Holly TA, Elliott MD, Bonow RO, Kim RJ, et al. Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 2002;106:2322–7.

    Article  PubMed  CAS  Google Scholar 

  50. Knuesel PR, Nanz D, Wyss C, Buechi M, Kaufmann PA, von Schulthess GK, et al. Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation 2003;108:1095–100.

    Article  PubMed  Google Scholar 

  51. Bulow H, Klein C, Kuehn I, Hollweck R, Nekolla SG, Schreiber K, et al. Cardiac magnetic resonance imaging: long term reproducibility of the late enhancement signal in patients with chronic coronary artery disease. Heart 2005;91:1158–63.

    Article  PubMed  CAS  Google Scholar 

  52. Nekolla S, Gneiting T, Syha J, Deichmann R, Haase A. Tl maps by K-space reduced snapshot-FLASH MRI. J Comput Assist Tomogr 1992;16:327–32.

    Article  PubMed  CAS  Google Scholar 

  53. Ibrahim T, Nekolla SG, Hornke M, Bulow HP, Dirschinger J, Schomig A, et al. Quantitative measurement of infarct size by contrast-enhanced magnetic resonance imaging early after acute myocardial infarction: comparison with single-photon emission tomography using Tc99m-sestamibi. J Am Coll Cardiol 2005;45:544–52.

    Article  PubMed  Google Scholar 

  54. Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 1970;41:250–4.

    Article  CAS  Google Scholar 

  55. Scheffler K, Hennig J. Tl quantification with inversion recovery TrueFISP. Magn Reson Med 2001;45:720–3.

    Article  PubMed  CAS  Google Scholar 

  56. Kellman P, Arai AE, McVeigh ER, Aletras AH. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 2002; 47:372–83.

    Article  PubMed  Google Scholar 

  57. Huber AM, Schoenberg SO, Hayes C, Spannagl B, Engelmann MG, Franz WM, et al. Phase-sensitive inversion-recovery MR imaging in the detection of myocardial infarction. Radiology 2005;237:854–60.

    Article  PubMed  Google Scholar 

  58. Setser RM, Chung YC, Weaver JA, Stillman AE, Simonetti OP, White RD. Effect of inversion time on delayed-enhancement magnetic resonance imaging with and without phase-sensitive reconstruction. J Magn Reson Imaging 2005;21:650–5.

    Article  PubMed  Google Scholar 

  59. Detsky JS, Stainsby JA, Vijayaraghavan R, Graham JJ, Dick AJ, Wright GA. Inversion-recovery-prepared SSFP for cardiacphase-resolved delayed-enhancement MRI. Magn Reson Med 2007;58:365–72.

    Article  PubMed  CAS  Google Scholar 

  60. Oshinski JN, Yang Z, Jones JR, Mata JF, French BA. Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 2001;104:2838–42.

    Article  PubMed  CAS  Google Scholar 

  61. Amado LC, Gerber BL, Gupta SN, Rettmann DW, Szarf G, Schock R, et al. Accurate and objective infarct sizing by contrastenhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 2004;44:2383–9.

    Article  PubMed  Google Scholar 

  62. Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000;36:959–69.

    Article  PubMed  CAS  Google Scholar 

  63. Petersen SE, Horstick G, Voigtlander T, Kreitner KF, Wittlinger T, Ziegler S, et al. Diagnostic value of routine clinical parameters in acute myocardial infarction: a comparison to delayed contrast enhanced magnetic resonance imaging. Delayed enhancement and routine clinical parameters after myocardial infarction. Int J Cardiovasc Imaging 2003;19:409–16.

    Article  PubMed  Google Scholar 

  64. Ingkanisorn WP, Rhoads KL, Aletras AH, Kellman P, Arai AE. Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction. J Am Coll Cardiol 2004;43:2253–9.

    Article  PubMed  Google Scholar 

  65. Pereira RS, Wisenberg G, Prato FS, Yvorchuk K. Clinical assessment of myocardial viability using MRI during a constant infusion of Gd-DTPA. MAGMA 2000;11:104–13.

    Article  PubMed  CAS  Google Scholar 

  66. Lund GK, Stork A, Saeed M, Bansmann MP, Gerken JH, Muller V, et al. Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with 201Tl SPECT imaging. Radiology 2004;232:49–57.

    Article  PubMed  Google Scholar 

  67. Ibrahim T, Bulow HP, Hackl T, Hornke M, Nekolla SG, Breuer M, et al. Diagnostic value of contrast-enhanced magnetic resonance imaging and single-photon emission computed tomography for detection of myocardial necrosis early after acute myocardial infarction. J Am Coll Cardiol 2007;49:208–16.

    Article  PubMed  Google Scholar 

  68. Ramani K, Judd RM, Holly TA, Parrish TB, Rigolin VH, Parker MA, et al. Contrast magnetic resonance imaging in the assessment of myocardial viability in patients with stable coronary artery disease and left ventricular dysfunction. Circulation 1998; 98:2687–94.

    PubMed  CAS  Google Scholar 

  69. Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 2001;357:21–8.

    Article  PubMed  CAS  Google Scholar 

  70. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, et al. Assessment of myocardial viability with contrastenhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 2002;105:162–7.

    Article  PubMed  Google Scholar 

  71. Kuhl HP, Beek AM, van der Weerdt AP, Hofman MB, Visser CA, Lammertsma AA, et al. Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2003;41:1341–8.

    Article  PubMed  Google Scholar 

  72. Ansari M, Araoz PA, Gerard SK, Watzinger N, Lund GK, Massie BM, et al. Comparison of late enhancement cardiovascular magnetic resonance and thallium SPECT in patients with coronary disease and left ventricular dysfunction. J Cardiovasc Magn Reson 2004;6:549–56.

    Article  PubMed  Google Scholar 

  73. Mahrholdt H, Wagner A, Parker M, Regenfus M, Fieno DS, Bonow RO, et al. Relationship of contractile function to transmural extent of infarction in patients with chronic coronary artery disease. J Am Coll Cardiol 2003;42:505–12.

    Article  PubMed  Google Scholar 

  74. Kwong RY, Schussheim AE, Rekhraj S, Aletras AH, Geller N, Davis J, et al. Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging. Circulation 2003;107:531–7.

    Article  PubMed  Google Scholar 

  75. Bayes de Luna A, Cino JM, Pujadas S, Cygankiewicz I, Carreras F, Garcia-Moll X, et al. Concordance of electrocardiographic patterns and healed myocardial infarction location detected by cardiovascular magnetic resonance. Am J Cardiol 2006;97:443–51.

    Article  PubMed  Google Scholar 

  76. Porto I, Selvanayagam JB, Van Gaal WJ, Prati F, Cheng A, Channon K, et al. Plaque volume and occurrence and location of periprocedural myocardial necrosis after percutaneous coronary intervention: insights from delayed-enhancement magnetic resonance imaging, thrombolysis in myocardial infarction myocardial perfusion grade analysis, and intravascular ultrasound. Circulation 2006;114:662–9.

    Article  PubMed  Google Scholar 

  77. Bayes de Luna A, Wagner G, Birnbaum Y, Nikus K, Fiol M, Gorgels A, et al. A new terminology for left ventricular walls and location of myocardial infarcts that present Q wave based on the standard of cardiac magnetic resonance imaging: a statement for healthcare professionals from a committee appointed by the International Society for Holter and Noninvasive Electrocardiography. Circulation 2006;114:1755–60.

    Article  PubMed  Google Scholar 

  78. Samady H, Elefteriades JA, Abbott BG, Mattera JA, McPherson CA, Wackers FJ. Failure to improve left ventricular function after coronary revascularization for ischemic cardiomyopathy is not associated with worse outcome. Circulation 1999;100:1298–304.

    PubMed  CAS  Google Scholar 

  79. Lauerma K, Niemi P, Hanninen H, Janatuinen T, Voipio-Pulkki LM, Knuuti J, et al. Multimodality MR imaging assessment of myocardial viability: combination of first-pass and late contrast enhancement to wall motion dynamics and comparison with FDG PET-initial experience. Radiology 2000;217:729–36.

    PubMed  CAS  Google Scholar 

  80. Sandstede JJ, Lipke C, Beer M, Harre K, Pabst T, Kenn W, et al. Analysis of first-pass and delayed contrast-enhancement patterns of dysfunctional myocardium on MR imaging: use in the prediction of myocardial viability. AJR Am J Roentgenol 2000;174:1737–40.

    PubMed  CAS  Google Scholar 

  81. Schvartzman PR, Srichai MB, Grimm RA, Obuchowski NA, Hammer DF, McCarthy PM, et al. Nonstress delayed-enhancement magnetic resonance imaging of the myocardium predicts improvement of function after revascularization for chronic ischemic heart disease with left ventricular dysfunction. Am Heart J 2003;146:535–41.

    Article  PubMed  Google Scholar 

  82. Wellnhofer E, Olariu A, Klein C, Grafe M, Wahl A, Fleck E, et al. Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 2004;109:2172–4.

    Article  PubMed  Google Scholar 

  83. Selvanayagam JB, Kardos A, Francis JM, Wiesmann F, Petersen SE, Taggart DP, et al. Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation 2004;110:1535–41.

    Article  PubMed  Google Scholar 

  84. Van Hoe L, Vanderheyden M. Ischemic cardiomyopathy: value of different MRI techniques for prediction of functional recovery after revascularization. AJR Am J Roentgenol 2004;182:95–100.

    PubMed  Google Scholar 

  85. Gutberlet M, Frohlich M, Mehl S, Amthauer H, Hausmann H, Meyer R, et al. Myocardial viability assessment in patients with highly impaired left ventricular function: comparison of delayed enhancement, dobutamine stress MRI, end-diastolic wall thickness, and Ti201-SPECT with functional recovery after revascularization. Eur Radiol 2005;15:872–80.

    Article  PubMed  CAS  Google Scholar 

  86. Kuhl HP, Lipke CS, Krombach GA, Katoh M, Battenberg TF, Nowak B, et al. Assessment of reversible myocardial dysfunction in chronic ischaemic heart disease: comparison of contrastenhanced cardiovascular magnetic resonance and a combined positron emission tomography-single photon emission computed tomography imaging protocol. Eur Heart J 2006;27:846–53.

    Article  PubMed  Google Scholar 

  87. Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM. Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 2001; 104:1101–7.

    Article  PubMed  CAS  Google Scholar 

  88. Beek AM, Kuhl HP, Bondarenko O, Twisk JW, Hofman MB, van Dockum WG, et al. Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 2003; 42:895–901.

    Article  PubMed  Google Scholar 

  89. Kitagawa K, Sakuma H, Hirano T, Okamoto S, Makino K, Takeda K. Acute myocardial infarction: myocardial viability assessment in patients early thereafter comparison of contrastenhanced MR imaging with resting (201)Tl SPECT. Single photon emission computed tomography. Radiology 2003;226:138–44.

    Article  PubMed  Google Scholar 

  90. Motoyasu M, Sakuma H, Ichikawa Y, Ishida N, Uemura S, Okinaka T, et al. Prediction of regional functional recovery after acute myocardial infarction with low dose dobutamine stress cine MR imaging and contrast enhanced MR imaging. J Cardiovasc Magn Reson 2003;5:563–74.

    Article  PubMed  Google Scholar 

  91. Lund GK, Stork A, Muellerleile K, Barmeyer AA, Bansmann MP, Knefel M, et al. Prediction of left ventricular remodeling and analysis of infarct resorption in patients with reperfused myocardial infarcts by using contrast-enhanced MR imaging. Radiology 2007;245:95–102.

    Article  PubMed  Google Scholar 

  92. Bodi V, Sanchis J, Lopez-Lereu MP, Losada A, Nunez J, Pellicer M, et al. Usefulness of a comprehensive cardiovascular magnetic resonance imaging assessment for predicting recovery of left ventricular wall motion in the setting of myocardial stunning. J Am Coll Cardiol 2005;46:1747–52.

    Article  PubMed  Google Scholar 

  93. Bove CM, DiMaria JM, Voros S, Conaway MR, Kramer CM. Dobutamine response and myocardial infarct transmurality: functional improvement after coronary artery bypass grafting—initial experience. Radiology 2006;240:835–41.

    Article  PubMed  Google Scholar 

  94. Gerber BL, Rochitte CE, Bluemke DA, Melin JA, Crosille P, Becker LC, et al. Relation between Gd-DTPA contrast enhancement and regional inotropic response in the periphery and center of myocardial infarction. Circulation 2001;104:998–1004.

    Article  PubMed  CAS  Google Scholar 

  95. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998;97:765–72.

    PubMed  CAS  Google Scholar 

  96. Roes SD, Kelle S, Kaandorp TA, Kokocinski T, Poldermans D, Lamb HJ, et al. Comparison of myocardial infarct size assessed with contrast-enhanced magnetic resonance imaging and left ventricular function and volumes to predict mortality in patients with healed myocardial infarction. Am J Cardiol 2007;100:930–6.

    Article  PubMed  Google Scholar 

  97. Bello D, Fieno DS, Kim RJ, Pereles FS, Passman R, Song G, et al. Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol 2005;45:1104–8.

    Article  PubMed  Google Scholar 

  98. Eitzman D, al-Aouar Z, Kanter HL, vom Dahl J, Kirsh M, Deeb GM, et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559–65.

    PubMed  CAS  Google Scholar 

  99. Di Carli MF, Davidson M, Little R, Khanna S, Mody FV, Brunken RC, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994;73:527–33.

    Article  PubMed  Google Scholar 

  100. Lee KS, Marwick TH, Cook SA, Go RT, Fix JS, James KB, et al. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 1994;90:2687–94.

    PubMed  CAS  Google Scholar 

  101. vom Dahl J, Altehoefer C, Sheehan FH, Buechin P, Schulz G, Schwarz ER, et al. Effect of myocardial viability assessed by technetium-99m-sestamibi SPECT and fluorine-18-FDG PET on clinical outcome in coronary artery disease. J Nucl Med 1997; 38:742–8.

    Google Scholar 

  102. Di Carli MF, Maddahi J, Rokhsar S, Schelbert HR, Bianco-Batlles D, Brunken RC, et al. Long-term survival of patients with coronary artery disease and left ventricular dysfunction: implications for the role of myocardial viability assessment in management decisions. J Thorac Cardiovasc Surg 1998;116:997–1004.

    Article  PubMed  Google Scholar 

  103. Huitink JM, Visser FC, Bax JJ, van Lingen A, Groenveld AB, Teule GJ, et al. Predictive value of planar 18F-fluorodeoxyglucose imaging for cardiac events in patients after acute myocardial infarction. Am J Cardiol 1998;81:1072–7.

    Article  PubMed  CAS  Google Scholar 

  104. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006;355:1199–209.

    Article  PubMed  CAS  Google Scholar 

  105. Hendrikx M, Hensen K, Clijsters C, Jongen H, Koninckx R, Bijnens E, et al. Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation 2006;114(Suppl):I101–7.

    Article  PubMed  Google Scholar 

  106. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 2006;367:113–21.

    Article  PubMed  Google Scholar 

  107. Zohlnhofer D, Ott I, Mehilli J, Schomig K, Michalk F, Ibrahim T, et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 2006;295:1003–10.

    Article  PubMed  Google Scholar 

  108. Gick M, Jander N, Bestehorn HP, Kienzle RP, Ferenc M, Werner K, et al. Randomized evaluation of the effects of filter-based distal protection on myocardial perfusion and infarct size after primary percutaneous catheter intervention in myocardial infarction with and without ST-segment elevation. Circulation 2005; 112:1462–9.

    Article  PubMed  Google Scholar 

  109. Selvanayagam JB, Petersen SE, Francis JM, Robson MD, Kardos A, Neubauer S, et al. Effects of off-pump versus on-pump coronary surgery on reversible and irreversible myocardial injury: a randomized trial using cardiovascular magnetic resonance imaging and biochemical markers. Circulation 2004;109:345–50.

    Article  PubMed  Google Scholar 

  110. Silva JC, Rochitte CE, Junior JS, Tsutsui J, Andrade J, Martinez EE, et al. Late coronary artery recanalization effects on left ventricular remodelling and contractility by magnetic resonance imaging. Eur Heart J 2005;26:36–43.

    Article  PubMed  Google Scholar 

  111. Thiele H, Engelmann L, Elsner K, Kappl MJ, Storch WH, Rahimi K, et al. Comparison of pre-hospital combination-fibrinolysis plus conventional care with pre-hospital combination-fibrinolysis plus facilitated percutaneous coronary intervention in acute myocardial infarction. Eur Heart J 2005;26:1956–63.

    Article  PubMed  Google Scholar 

  112. Bello D, Shah DJ, Farah GM, Di Luzio S, Parker M, Johnson MR, et al. Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing beta-blocker therapy. Circulation 2003; 108:1945–53.

    Article  PubMed  CAS  Google Scholar 

  113. White JA, Yee R, Yuan X, Krahn A, Skanes A, Parker M, et al. Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol 2006;48:1953–60.

    Article  PubMed  Google Scholar 

  114. Ypenburg C, Roes SD, Bleeker GB, Kaandorp TA, de Roos A, Schalij MJ, et al. Effect of total scar burden on contrast-enhanced magnetic resonance imaging on response to cardiac resynchronization therapy. Am J Cardiol 2007;99:657–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Saraste.

Additional information

Financial assistance was provided by EC-FP6-project DiMl (LSHB-CT-2005-512146) and Finnish Foundation for Cardiovascular Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saraste, A., Nekolla, S. & Schwaiger, M. Contrast-enhanced magnetic resonance imaging in the assessment of myocardial infarction and viability. J. Nucl. Cardiol. 15, 105–117 (2008). https://doi.org/10.1007/BF02976902

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02976902

Keywords

Navigation