Skip to main content

Advertisement

Log in

Lipid Effects and Cardiovascular Disease Risk Associated with Glucose-Lowering Medications

  • Diabetes and Cardiovascular Disease (S Malik, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Diabetes is a global epidemic, associated with a high burden of complications and 4.6 million deaths annually worldwide. As a result of decreasing levels of physical activity and increasing rates of obesity, diabetes is shifting from a disease affecting the elderly to one that affects younger patients or even children. Thus, aggressive treatment and optimal control of risk factors is the key to improve outcomes in those patients. Accumulating evidence of the cardiovascular and lipid effects of glucose-lowering medications suggest that treatment efficacy in diabetes can be further improved. This review provides an overview of the lipid effects and cardiovascular disease risk of current anti-diabetic medications and highlights opportunities and challenges in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Haffner SM, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–34.

    Article  CAS  PubMed  Google Scholar 

  2. Preis SR, Pencina MJ, Mann DM, et al. Early-adulthood cardiovascular disease risk factor profiles among individuals with and without diabetes in the Framingham Heart Study. Diabetes Care. 2013;36:1590–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Stamler J, Vaccaro O, Neaton JD, et al. Diabetes, other risk factors, and 12-year cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16:434–44.

    Article  CAS  PubMed  Google Scholar 

  4. Turner RC, Millns H, Neil HA, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). Br Med J. 1998;316:823–8.

    Article  CAS  Google Scholar 

  5. Tan CE, Chew LS, Chio LF, et al. Cardiovascular risk factors and LDL subfraction profile in Type 2 diabetes mellitus subjects with good glycaemic control. Diabetes Res Clin Pract. 2001;51:107–14.

    Article  CAS  PubMed  Google Scholar 

  6. Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab. 2009;5:150–9.

    Article  CAS  PubMed  Google Scholar 

  7. Chehade JM, Gladysz M, Mooradian AD. Dyslipidemia in type 2 diabetes: prevalence, pathophysiology, and management. Drugs. 2013;73:327–39. This article provides an excellent overview of the characteristics of diabetic dyslipidemia including pathophysiological aspects and clinical implications.

    Article  CAS  PubMed  Google Scholar 

  8. Buse JB, Tan MH, Prince MJ, et al. The effects of oral anti-hyperglycaemic medications on serum lipid profiles in patients with type 2 diabetes. Diabetes Obes Metab. 2004;6:133–56.

    Article  CAS  PubMed  Google Scholar 

  9. DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med. 1995;333:541–9.

    Article  CAS  PubMed  Google Scholar 

  10. Grant PJ. The effects of high- and medium-dose metformin therapy on cardiovascular risk factors in patients with type II diabetes. Diabetes Care. 1996;19:64–6.

    Article  CAS  PubMed  Google Scholar 

  11. Lund SS, Tarnow L, Astrup AS, et al. Effect of adjunct metformin treatment on levels of plasma lipids in patients with type 1 diabetes. Diabetes Obes Metab. 2009;11:966–77.

    Article  CAS  PubMed  Google Scholar 

  12. Tessier D, Maheux P, Khalil A, et al. Effects of gliclazide versus metformin on the clinical profile and lipid peroxidation markers in type 2 diabetes. Metab Clin Exp. 1999;48:897–903.

    Article  CAS  PubMed  Google Scholar 

  13. Hollenbeck CB, Johnston P, Varasteh BB, et al. Effects of metformin on glucose, insulin and lipid metabolism in patients with mild hypertriglyceridaemia and non-insulin dependent diabetes by glucose tolerance test criteria. Diabete Metab. 1991;17:483–9.

    CAS  PubMed  Google Scholar 

  14. Stumvoll M, Nurjhan N, Perriello G, et al. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333:550–4.

    Article  CAS  PubMed  Google Scholar 

  15. Campbell IW, Menzies DG, Chalmers J, et al. One year comparative trial of metformin and glipizide in type 2 diabetes mellitus. Diabete Metab. 1994;20:394–400.

    CAS  PubMed  Google Scholar 

  16. Belcher G, Lambert C, Goh KL, et al. Cardiovascular effects of treatment of type 2 diabetes with pioglitazone, metformin and gliclazide. Int J Clin Pract. 2004;58:833–7.

    Article  CAS  PubMed  Google Scholar 

  17. Wulffele MG, Kooy A, de Zeeuw D, et al. The effect of metformin on blood pressure, plasma cholesterol and triglycerides in type 2 diabetes mellitus: a systematic review. J Intern Med. 2004;256:1–14.

    Article  CAS  PubMed  Google Scholar 

  18. Bhalla RC, Toth KF, Tan E, et al. Vascular effects of metformin. Possible mechanisms for its antihypertensive action in the spontaneously hypertensive rat. Am J Hypertens. 1996;9:570–6.

    Article  CAS  PubMed  Google Scholar 

  19. Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001;37:1344–50.

    Article  CAS  PubMed  Google Scholar 

  20. Yin M, van der Horst IC, van Melle JP, et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol. 2011;301:H459–68.

    Article  CAS  PubMed  Google Scholar 

  21. Solskov L, Lofgren B, Kristiansen SB, et al. Metformin induces cardioprotection against ischaemia/reperfusion injury in the rat heart 24 hours after administration. Basic Clin Pharmacol Toxicol. 2008;103:82–7.

    Article  CAS  PubMed  Google Scholar 

  22. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.

    Article  Google Scholar 

  23. Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    Article  CAS  PubMed  Google Scholar 

  24. Solini A, Penno G, Bonora E, et al. Age, renal dysfunction, cardiovascular disease, and antihyperglycemic treatment in type 2 diabetes mellitus: findings from the Renal Insufficiency and Cardiovascular Events Italian Multicenter Study. J Am Geriatr Soc. 2013;61:1253–61. This study demonstrates that metformin treatment is independently associated with a lower prevalence of cardiovascular disease independent of age and renal function.

    Article  PubMed  Google Scholar 

  25. Roussel R, Travert F, Pasquet B, et al. Metformin use and mortality among patients with diabetes and atherothrombosis. Arch Intern Med. 2010;170:1892–9.

    Article  CAS  PubMed  Google Scholar 

  26. Aguilar D, Chan W, Bozkurt B, et al. Metformin use and mortality in ambulatory patients with diabetes and heart failure. Circ Heart Fail. 2011;4:53–8. This study demonstrates that metformin therapy is associated with lower rates of mortality in diabetic patients with heart failure.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Aguilar-Bryan L, Nichols CG, Wechsler SW, et al. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science. 1995;268:423–6.

    Article  CAS  PubMed  Google Scholar 

  28. Johanson EH, Jansson PA, Gustafson B, et al. No acute effect of nateglinide on postprandial lipid and lipoprotein responses in subjects at risk for type 2 diabetes. Diabetes Metab Res Rev. 2005;21:376–81.

    Article  CAS  PubMed  Google Scholar 

  29. Salman S, Salman F, Satman I, et al. Comparison of acarbose and gliclazide as first-line agents in patients with type 2 diabetes. Curr Med Res Opin. 2001;16:296–306.

    Article  CAS  PubMed  Google Scholar 

  30. Jeppesen J, Zhou MY, Chen YD, et al. Effect of glipizide treatment on postprandial lipaemia in patients with NIDDM. Diabetologia. 1994;37:781–7.

    Article  CAS  PubMed  Google Scholar 

  31. Waysbort J, Regitz G, Chaimowitz D, et al. Effects of glibenclamide on serum lipids, lipoproteins, thromboxane, beta-thromboglobulin, and prostacyclin in non-insulin-dependent diabetes mellitus. Clin Ther. 1988;10:358–71.

    CAS  PubMed  Google Scholar 

  32. Rizzo MR, Barbieri M, Grella R, et al. Repaglinide has more beneficial effect on cardiovascular risk factors than glimepiride: data from meal-test study. Diabetes Metab. 2005;31:255–60.

    Article  CAS  PubMed  Google Scholar 

  33. Monami M, Vitale V, Ambrosio ML, et al. Effects on lipid profile of dipeptidyl peptidase 4 inhibitors, pioglitazone, acarbose, and sulfonylureas: meta-analysis of placebo-controlled trials. Adv Ther. 2012;29:736–46. This meta-analysis investigates the effects of different glucose-lowering drugs on lipid profiles.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang F, Xiang H, Fan Y, et al. The effects of sulfonylureas plus metformin on lipids, blood pressure, and adverse events in type 2 diabetes: a meta-analysis of randomized controlled trials. Endocrine. 2013;44:648–58.

    Article  CAS  PubMed  Google Scholar 

  35. Roumie CL, Huizinga MM, Liu X, et al. The effect of incident antidiabetic regimens on lipid profiles in veterans with type 2 diabetes: a retrospective cohort. Pharmacoepidemiol Drug Saf. 2011;20:36–44.

    Article  PubMed  Google Scholar 

  36. Konya H, Hasegawa Y, Hamaguchi T, et al. Effects of gliclazide on platelet aggregation and the plasminogen activator inhibitor type 1 level in patients with type 2 diabetes mellitus. Metab Clin Exp. 2010;59:1294–9.

    Article  CAS  PubMed  Google Scholar 

  37. Manzella D, Grella R, Abbatecola AM, et al. Repaglinide administration improves brachial reactivity in type 2 diabetic patients. Diabetes Care. 2005;28:366–71.

    Article  CAS  PubMed  Google Scholar 

  38. Esposito K, Giugliano D, Nappo F, et al. Campanian Postprandial Hyperglycemia Study G. Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation. 2004;110:214–9.

    Article  CAS  PubMed  Google Scholar 

  39. Phung OJ, Schwartzman E, Allen RW, et al. Sulphonylureas and risk of cardiovascular disease: systematic review and meta-analysis. Diabet Med. 2013;30:1160–71. This study suggests that sulfonylurea treatment may elevate the risk of cardiovascular disease in diabetic patients.

    Article  CAS  PubMed  Google Scholar 

  40. Schramm TK, Gislason GH, Vaag A, et al. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J. 2011;32:1900–8. This study suggests that monotherapy with the most used insulin secretagogues is associated with increased mortality and cardiovascular risk as compared with metformin treatment.

    Article  CAS  PubMed  Google Scholar 

  41. Simpson SH, Majumdar SR, Tsuyuki RT, et al. Dose–response relation between sulfonylurea drugs and mortality in type 2 diabetes mellitus: a population-based cohort study. CMAJ : Can Med Assoc J. 2006;174:169–74.

  42. Roumie CL, Hung AM, Greevy RA, et al. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2012;157:601–10.

    Article  PubMed  Google Scholar 

  43. Gangji AS, Cukierman T, Gerstein HC, et al. A systematic review and meta-analysis of hypoglycemia and cardiovascular events: a comparison of glyburide with other secretagogues and with insulin. Diabetes Care. 2007;30:389–94.

    Article  PubMed  Google Scholar 

  44. Haffner SM, Greenberg AS, Weston WM, et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation. 2002;106:679–84.

    Article  CAS  PubMed  Google Scholar 

  45. Mazzone T, Meyer PM, Feinstein SB, et al. Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. J Am Med Assoc. 2006;296:2572–81.

    Article  CAS  Google Scholar 

  46. Khanolkar MP, Morris RH, Thomas AW, et al. Rosiglitazone produces a greater reduction in circulating platelet activity compared with gliclazide in patients with type 2 diabetes mellitus—an effect probably mediated by direct platelet PPARgamma activation. Atherosclerosis. 2008;197:718–24.

    Article  CAS  PubMed  Google Scholar 

  47. Patel J, Anderson RJ, Rappaport EB. Rosiglitazone monotherapy improves glycaemic control in patients with type 2 diabetes: a twelve-week, randomized, placebo-controlled study. Diabetes Obes Metab. 1999;1:165–72.

    Article  CAS  PubMed  Google Scholar 

  48. Raskin P, Rappaport EB, Cole ST, et al. Rosiglitazone short-term monotherapy lowers fasting and post-prandial glucose in patients with type II diabetes. Diabetologia. 2000;43:278–84.

    Article  CAS  PubMed  Google Scholar 

  49. Lebovitz HE, Dole JF, Patwardhan R, et al. Rosiglitazone Clinical Trials Study Group. Rosiglitazone monotherapy is effective in patients with type 2 diabetes. J Clin Endocrinol Metab. 2001;86:280–8.

    Article  CAS  PubMed  Google Scholar 

  50. Phillips LS, Grunberger G, Miller E, et al. Once- and twice-daily dosing with rosiglitazone improves glycemic control in patients with type 2 diabetes. Diabetes Care. 2001;24:308–15.

    Article  CAS  PubMed  Google Scholar 

  51. Atamer Y, Atamer A, Can AS, et al. Effects of rosiglitazone on serum paraoxonase activity and metabolic parameters in patients with type 2 diabetes mellitus. Braz J Med Biol Res. 2013;46:528–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Deeg MA, Buse JB, Goldberg RB, et al. Pioglitazone and rosiglitazone have different effects on serum lipoprotein particle concentrations and sizes in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2007;30:2458–64.

    Article  CAS  PubMed  Google Scholar 

  53. Suh DC, Lee DH, McGuire M, et al. Impact of rosiglitazone therapy on the lipid profile, glycemic control, and medication costs among type 2 diabetes patients. Curr Med Res Opin. 2011;27:1623–33.

    Article  CAS  PubMed  Google Scholar 

  54. Berhanu P, Perez A, Yu S. Effect of pioglitazone in combination with insulin therapy on glycaemic control, insulin dose requirement and lipid profile in patients with type 2 diabetes previously poorly controlled with combination therapy. Diabetes Obes Metab. 2007;9:512–20.

    Article  CAS  PubMed  Google Scholar 

  55. Goldberg RB, Kendall DM, Deeg MA, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2005;28:1547–54.

    Article  CAS  PubMed  Google Scholar 

  56. Derosa G, D’Angelo A, Ragonesi PD, et al. Metabolic effects of pioglitazone and rosiglitazone in patients with diabetes and metabolic syndrome treated with metformin. Intern Med J. 2007;37:79–86.

    Article  CAS  PubMed  Google Scholar 

  57. Nicholls SJ, Tuzcu EM, Wolski K, et al. Lowering the triglyceride/high-density lipoprotein cholesterol ratio is associated with the beneficial impact of pioglitazone on progression of coronary atherosclerosis in diabetic patients: insights from the PERISCOPE (Pioglitazone Effect on Regression of Intravascular Sonographic Coronary Obstruction Prospective Evaluation) study. J Am Coll Cardiol. 2011;57:153–9. This study shows that favorable effects of pioglitazone on the triglyceride/HDL cholesterol ratio correlate with delayed atheroma progression in diabetic patients.

    Article  CAS  PubMed  Google Scholar 

  58. Lago RM, Singh PP, Nesto RW. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet. 2007;370:1129–36.

    Article  CAS  PubMed  Google Scholar 

  59. Lipscombe LL, Gomes T, Levesque LE, et al. Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. J Am Med Assoc. 2007;298:2634–43.

    Article  CAS  Google Scholar 

  60. Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. J Am Med Assoc. 2007;298:1189–95.

    Article  CAS  Google Scholar 

  61. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.

    Article  CAS  PubMed  Google Scholar 

  62. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366:1279–89.

    Article  CAS  PubMed  Google Scholar 

  63. Komajda M, McMurray JJ, Beck-Nielsen H, et al. Heart failure events with rosiglitazone in type 2 diabetes: data from the RECORD clinical trial. Eur Heart J. 2010;31:824–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373:2125–35.

    Article  CAS  PubMed  Google Scholar 

  65. Henry RR, Lincoff AM, Mudaliar S, et al. Effect of the dual peroxisome proliferator-activated receptor-α/γ agonist aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY): a phase II, randomised, dose-ranging study. Lancet. 2009;374(9684):126–35.

    Article  CAS  PubMed  Google Scholar 

  66. Lincoff AM, Tardif JC, Schwartz GG, et al. Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: the AleCardio randomized clinical trial. J Am Med Assoc. 2014;311:1515–25. This large randomized trial has shown that the dual PPAR agonist aleglitazar did not improve clinical outcomes in patients with diabetes and a recent acute coronary syndrome despite favorable effects on glycemic control and the lipid profile.

    Article  CAS  Google Scholar 

  67. Shinoda Y, Inoue I, Nakano T, et al. Acarbose improves fibrinolytic activity in patients with impaired glucose tolerance. Metab Clin Exp. 2006;55:935–9.

    Article  CAS  PubMed  Google Scholar 

  68. Patel YR, Kirkman MS, Considine RV, et al. Effect of acarbose to delay progression of carotid intima-media thickness in early diabetes. Diabetes Metab Res Rev. 2013;29:582–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Hanefeld M, Chiasson JL, Koehler C, et al. Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke. 2004;35:1073–8.

    Article  CAS  PubMed  Google Scholar 

  70. Liao Y, Takashima S, Zhao H, et al. Control of plasma glucose with alpha-glucosidase inhibitor attenuates oxidative stress and slows the progression of heart failure in mice. Cardiovasc Res. 2006;70:107–16.

    Article  CAS  PubMed  Google Scholar 

  71. Iwasa M, Kobayashi H, Yasuda S, et al. Antidiabetic drug voglibose is protective against ischemia-reperfusion injury through glucagon-like peptide 1 receptors and the phosphoinositide 3-kinase-Akt-endothelial nitric oxide synthase pathway in rabbits. J Cardiovasc Pharmacol. 2010;55:625–34.

    Article  CAS  PubMed  Google Scholar 

  72. Hiki M, Shimada K, Kiyanagi T, et al. Single administration of alpha-glucosidase inhibitors on endothelial function and incretin secretion in diabetic patients with coronary artery disease - Juntendo University trial: effects of miglitol on endothelial vascular reactivity in type 2 diabetic patients with coronary heart disease (J-MACH). Circ J. 2010;74:1471–8.

    Article  CAS  PubMed  Google Scholar 

  73. Emoto T, Sawada T, Hashimoto M, et al. Effect of 3-month repeated administration of miglitol on vascular endothelial function in patients with diabetes mellitus and coronary artery disease. Am J Cardiol. 2012;109:42–6.

    Article  CAS  PubMed  Google Scholar 

  74. Ogawa S, Takeuchi K, Ito S. Acarbose lowers serum triglyceride and postprandial chylomicron levels in type 2 diabetes. Diabetes Obes Metab. 2004;6:384–90.

    Article  CAS  PubMed  Google Scholar 

  75. Hoffmann J, Spengler M. Efficacy of 24-week monotherapy with acarbose, metformin, or placebo in dietary-treated NIDDM patients: the Essen-II Study. Am J Med. 1997;103:483–90.

    Article  CAS  PubMed  Google Scholar 

  76. Shrivastava A, Chaturvedi U, Singh SV, et al. Lipid lowering and antioxidant effect of miglitol in triton treated hyperlipidemic and high fat diet induced obese rats. Lipids. 2013;48:597–607.

    Article  CAS  PubMed  Google Scholar 

  77. Chiasson JL, Josse RG, Gomis R, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. J Am Med Assoc. 2003;290:486–94.

    Article  CAS  Google Scholar 

  78. Hanefeld M, Cagatay M, Petrowitsch T, et al. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J. 2004;25:10–6.

    Article  CAS  PubMed  Google Scholar 

  79. van de Laar FA, Lucassen PL, Akkermans RP, et al. Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care. 2005;28:154–63.

    Article  PubMed  Google Scholar 

  80. Diamant M, Van Gaal L, Stranks S, et al. Once weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes (DURATION-3): an open-label randomised trial. Lancet. 2010;375:2234–43.

    Article  CAS  PubMed  Google Scholar 

  81. Ye Y, Qian J, Castillo AC, et al. Phosphodiesterase-3 inhibition augments the myocardial infarct size-limiting effects of exenatide in mice with type 2 diabetes. Am J Physiol Heart Circ Physiol. 2013;304:H131–41.

    Article  CAS  PubMed  Google Scholar 

  82. Nystrom T, Gutniak MK, Zhang Q, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004;287:E1209–15.

    Article  PubMed  CAS  Google Scholar 

  83. Gaspari T, Liu H, Welungoda I, et al. A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE-/- mouse model. Diab Vasc Dis Res. 2011;8:117–24.

    Article  PubMed  Google Scholar 

  84. Rizzo M, Chandalia M, Patti AM, et al. Liraglutide decreases carotid intima-media thickness in patients with type 2 diabetes: 8-month prospective pilot study. Cardiovasc Diabetol. 2014;13:49.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109:962–5.

    Article  CAS  PubMed  Google Scholar 

  86. Varanasi A, Patel P, Makdissi A, et al. Clinical use of liraglutide in type 2 diabetes and its effects on cardiovascular risk factors. Endocr Pract : Off J Am Coll Endocrinol Am Assoc Clin Endocrinologists. 2012;18:140–5.

    Article  Google Scholar 

  87. Yu M, Moreno C, Hoagland KM, et al. Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J Hypertens. 2003;21:1125–35.

    Article  CAS  PubMed  Google Scholar 

  88. Koren S, Shemesh-Bar L, Tirosh A, et al. The effect of sitagliptin versus glibenclamide on arterial stiffness, blood pressure, lipids, and inflammation in type 2 diabetes mellitus patients. Diabetes Technol Ther. 2012;14:561–7.

    Article  CAS  PubMed  Google Scholar 

  89. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. J Am Med Assoc. 2007;298:194–206.

    Article  CAS  Google Scholar 

  90. Tokuda M, Katsuno T, Ochi F, et al. Effects of exenatide on metabolic parameters/control in obese Japanese patients with type 2 diabetes. Endocr J. 2014;61:365–72.

    Article  CAS  PubMed  Google Scholar 

  91. Schwartz EA, Koska J, Mullin MP, et al. Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus. Atherosclerosis. 2010;212:217–22.

    Article  CAS  PubMed  Google Scholar 

  92. Xiao C, Bandsma RH, Dash S, et al. Exenatide, a glucagon-like peptide-1 receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans. Arterioscler Thromb Vasc Biol. 2012;32:1513–9.

    Article  CAS  PubMed  Google Scholar 

  93. Klonoff DC, Buse JB, Nielsen LL, et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin. 2008;24:275–86.

    CAS  PubMed  Google Scholar 

  94. Peskin BR, Shcheprov AV, Boye KS, et al. Cardiovascular outcomes associated with a new once-weekly GLP-1 receptor agonist vs. traditional therapies for type 2 diabetes: a simulation analysis. Diabetes Obes Metab. 2011;13:921–7.

    Article  CAS  PubMed  Google Scholar 

  95. Wu D, Li L, Liu C. Efficacy and safety of dipeptidyl peptidase-4 inhibitors and metformin as initial combination therapy and as monotherapy in patients with type 2 diabetes mellitus: a meta-analysis. Diabetes Obes Metab. 2014;16:30–7.

    Article  CAS  PubMed  Google Scholar 

  96. Monami M, Dicembrini I, Martelli D, et al. Safety of dipeptidyl peptidase-4 inhibitors: a meta-analysis of randomized clinical trials. Curr Med Res Opin. 2011;27 Suppl 3:57–64.

    Article  CAS  PubMed  Google Scholar 

  97. Monami M, Cremasco F, Lamanna C, et al. Glucagon-like peptide-1 receptor agonists and cardiovascular events: a meta-analysis of randomized clinical trials. Exp Diabetes Res. 2011;2011:215764.

    PubMed Central  PubMed  Google Scholar 

  98. White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–35. This study demonstrates that among diabetic patients with recent acute coronary syndrome, rates of ischemic cardiovascular events are not increased with alogliptin as compared with placebo.

    Article  CAS  PubMed  Google Scholar 

  99. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26. This study demonstrates that DPP-4 inhibition with saxagliptin does not alter rates of ischemic events, although rates of hospitalization for heart failure were increased.

    Article  CAS  PubMed  Google Scholar 

  100. Monami M, Dicembrini I, Mannucci E. Dipeptidyl peptidase-4 inhibitors and heart failure: a meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis : NMCD. 2014;24(7):689–97.

    Article  CAS  PubMed  Google Scholar 

  101. Chao EC, Henry RR. SGLT2 inhibition - a novel strategy for diabetes treatment. Nat Rev Drug Discov. 2010;9:551–9.

    Article  CAS  PubMed  Google Scholar 

  102. Wilding JP, Woo V, Soler NG, Pahor A, Sugg J, Rohwedder K, et al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin. A randomized trial. Ann Intern Med. 2012;156:405–15.

    Article  PubMed  Google Scholar 

  103. Parikh S, Wilding J, Jabbour S, Hardy E. Dapagliflozin in type 2 diabetes: effectiveness across the spectrum of disease and over time. Int J Clin Pract. 2015;69:186–98.

    Article  CAS  PubMed  Google Scholar 

  104. Bode B, Stenlöf K, Harris S, Sullivan D, Fung A, Usiskin K, et al. Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55-80 years with type 2 diabetes. Diabetes Obes Metab. 2015;17:294–303.

    Article  CAS  PubMed  Google Scholar 

  105. Amin NB, Wang X, Jain SM, Lee DS, Nucci G, Rusnak JM. Dose-ranging efficacy and safety study of ertugliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor, in patients with type 2 diabetes on a background of metformin. Diabetes Obes Metab. 2015;17(6):591–8.

  106. Gerstein HC, Bosch J, Dagenais GR, et al. ORIGIN Trial Investigators. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367:319–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Barbara E. Stähli was supported by the Gottfried-und-Julia-Bangerter-Rhyner Foundation, the Novartis Foundation for Medical-Biological Research (13B067), and the Swiss Foundation for Medical-Biological Scholarships (SSMBS; No P3SMP3_151740/1). Cathérine Gebhard was supported by the Novartis Foundation for Medical-Biological Research and the Swiss Foundation for Medical-Biological Scholarships (SSMBS; No 142741). Dr. Tardif holds the Canada Research Chair in translational and personalized medicine and the University of Montreal endowed research chair in atherosclerosis.

Compliance with Ethics Guidelines

Conflict of Interest

Barbara E. Stähli and Catherine Gebhard declare that they have no conflict of interest.

Jean-Claude Tardif has received grant support from Astra-Zeneca, Roche, Sanofi, and Valeant and has received honoraria from Roche, Sanofi, and Valeant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Tardif.

Additional information

This article is part of the Topical Collection on Diabetes and Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stähli, B.E., Gebhard, C. & Tardif, JC. Lipid Effects and Cardiovascular Disease Risk Associated with Glucose-Lowering Medications. Curr Cardiol Rep 17, 55 (2015). https://doi.org/10.1007/s11886-015-0608-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0608-6

Keywords

Navigation