Skip to main content
Log in

Pyrazole-Triazine Conjugate as Highly Selective and Sensitive Fluorescence Probe for Silver (I) Detection and Its Imaging in Living Cells

  • Chemistry and Physics
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

A new fluorescence probe 2,2′-(6-(4-(diethylamino) phenyl)-1,3,5-triazine-2,4-diyl)bis(1H-pyrazole-1,3-diyl) diacetate (EATPA) based on 1, 3, 5-triazine was designed and synthesized. It exhibited distinct fluorescence quenching in the presence of silver ions that can be used for highly sensitive and selective detection of Ag+. Fluorescence titration and Job’s plot analysis revealed the formation of [Ag(EATPA)2]+ entity with high binding constant (1.43×104 L/mol) and low detection limit (0.882 µmol/L). Furthermore, live-cell imaging experiments demonstrated that EATPA is potentially applicable for the tracking of Ag+ in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review [J]. Journal of Environmental Management, 2011, 92(3): 407–418.

    Article  CAS  PubMed  Google Scholar 

  2. Sud D, Mahajan G, Kaur M P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—A review [J]. Bioresource Technology, 2008, 99(14): 6017–6027.

    Article  CAS  PubMed  Google Scholar 

  3. Ratte H T. Bioaccumulation and toxicity of silver compounds: A review [J]. Environmental Toxicology and Chemistry, 2010, 18(1): 89–108.

    Article  Google Scholar 

  4. Wood C M, Playle R C, Hogstrand C. Physiology and modeling of mechanisms of silver uptake and toxicity in fish [J]. Environmental Toxicology and Chemistry, 2010, 18(1): 71–83.

    Article  Google Scholar 

  5. Kim T N, Kim J O, Wu J, et al. Antimicrobial effects of metal ions (Ag+, Cu2+ Zn2+) in hydroxyapatite [J]. Journal of Materials Science: Materials in Medicine, 1998, 9(3): 129–134.

    PubMed  Google Scholar 

  6. Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis [J]. Applied and Environmental Microbiology, 2005, 71(11): 7589–7593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nandre J P, Patil S R, Sahoo S K, et al. A chemosensor for micro- to nano-molar detection of Ag+ and Hg2+ ions in pure aqueous media and its applications in cell imaging [J]. Dalton Transactions, 2017, 46(41): 14201–14209.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y J, Liu J G, Tan H Y, et al. A colorimetric and farred fluorescent probe for the highly sensitive detection of silver (I) [J]. RSC Advances, 2017, 7(88): 55567–55570.

    Article  CAS  Google Scholar 

  9. Chen B, Liu J, Yang T, et al. Development of a portable device for Ag+ sensing using CdTe QDs as fluorescence probe via an electron transfer process [J]. Talanta, 2019, 191: 357–363.

    Article  CAS  PubMed  Google Scholar 

  10. Chamsaz M, Arbab-Zavar M H, Akhondzadeh J. Triple-phase single-drop microextraction of silver and its determination using graphite-furnace atomic-absorption spectrometry [J]. Analytical Sciences, 2008, 24(6): 709–801.

    Article  Google Scholar 

  11. Mikelova R, Baloun J, Petrlova J, et al. Electrochemical determination of Ag-ions in environment waters and their action on plant embryos [J]. Bioelectrochemistry, 2007, 70 (2): 508–518.

    Article  CAS  PubMed  Google Scholar 

  12. Tan E, Yin P, Lang X F, et al. Functionalized gold nanoparticles as nanosensor for sensitive and selective detection of silver ions and silver nanoparticles by surface-enhanced Raman scattering [J]. Analyst, 2012, 137 (17): 3925–3928.

    Article  CAS  PubMed  Google Scholar 

  13. Yang X J, Foley R, Low G K C. A modified digestion procedure for analysing silver in environmental water samples [J]. Analyst, 2002, 127(2): 315–318.

    Article  CAS  Google Scholar 

  14. Ding Y B, Tang Y Y, Zhu W H, et al. Fluorescent and colorimetric ion probes based on conjugated oligopyrroles [J]. Chemical Society Reviews, 2015, 44(5): 1101–1112.

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Wang T X, Tian X J, et al. Europium complex doped luminescent solar concentrators with extended absorption range from UV to visible region [J]. Solar Energy, 2011, 85(9): 2179–2184.

    Article  CAS  Google Scholar 

  16. Paul P, Tyagi B, Bilakhiya A K, et al. Synthesis and characterization of rhodium complexes containing 2,4,6-Tris(2-pyridyl)-1,3,5-triazine and its metal-promoted hydrolytic products: Potential uses of the new complexes in electrocatalytic reduction of carbon dioxide [J]. Inorganic Chemistry, 1998, 37(22): 5733–5742.

    Article  CAS  Google Scholar 

  17. Lebreton S, Newcombe N, Bradley M. Antibacterial single-bead screening [J]. Tetrahedron, 2003, 59(51): 10213–10222.

    Article  CAS  Google Scholar 

  18. Hoog P D, Gamez P, Driessen W L, et al. New polydentate and polynucleating N-donor ligands from amines and 2,4,6-trichloro-1,3,5-triazine [J]. Tetrahedron Letters, 2002, 43(38): 6783–6786.

    Article  Google Scholar 

  19. Shellaiah M, Rajan Y C, Lin H C. Synthesis of novel triarylamine-based dendrimers with N4, N6-dibutyl-1,3,5-triazine-4,6-diamine probe for electron/energy transfers in H-bonded donor-acceptor-donor triads and as efficient Cu2+ sensors [J]. Journal of Materials Chemistry, 2012, 22(18): 8976–8987.

    Article  CAS  Google Scholar 

  20. Zhang Y, Zeng X, Mu L, et al. Rhodamine-triazine based probes for Cu2+ in aqueous media and living cells [J]. Sensors and Actuators B: Chemical, 2014, 204: 24–30.

    Article  CAS  Google Scholar 

  21. Zhu Y Z, Qiao M, Peng W C, et al. Rapid exfoliation of layered covalent triazine-based frameworks into N-doped quantum dots for the selective detection of Hg2+ ions [J]. Journal of Materials Chemistry A, 2017, 5: 9272–9278.

    Article  CAS  Google Scholar 

  22. Sang Q G, Yang J K. An efficient way for the recognition of zinc ion via the fluorescence enhancement [J]. Chinese Journal of Chemistry, 2012, 30(7): 1410–1414.

    Article  CAS  Google Scholar 

  23. Ge F Y, Yang C, Cai Z S. Fluorescence sensor performance of a new fluorescein derivate: [2-Morpholine-4-(6-chlorine-1,3,5-s-triazine)-amino]fluorescein [J]. Bulletin of the Korean Chemical Society, 2015, 36(11): 2703–2709.

    Article  CAS  Google Scholar 

  24. Nie L H, Ma H M, Li X H, et al. Recognition of thymine by triazine fluorescent probe through intermolecular multiple hydrogen bonding [J]. Biopolymers, 2010, 72(4): 274–281.

    Article  CAS  Google Scholar 

  25. Ma H M, Nie L N, Xiong S X. Recognition of guanine by a designed triazine based fluorescent probe through intermolecular multiple hydrogen bonding [J]. Supramolecular Chemistry, 2004, 16(5): 311–317.

    Article  CAS  Google Scholar 

  26. Ye Z Q, Chen J X, Wang G L, et al. Development of a terbium complex-based luminescent probe for imaging endogenous hydrogen peroxide generation in plant tissues [J]. Analytical Chemistry, 2011, 83(11): 4163–4169.

    Article  CAS  PubMed  Google Scholar 

  27. Tan M Q, Song B, Wang G L, et al. A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe [J]. Free Radical Biology and Medicine, 2006, 40(9): 1644–1653.

    Article  CAS  PubMed  Google Scholar 

  28. Kumar K S, Schafer B, Lebedkin S, et al. Highly luminescent charge-neutral europium (I) and terbium (I) complexes with tridentate nitrogen ligands [J]. Dalton Transactions, 2015, 44(35): 15611–15619.

    Article  CAS  Google Scholar 

  29. Xu L, Xu Y, Zhu W, et al. A highly selective and sensitive fluorescence “turn-on” probe for Ag+ in aqueous solution and live cells [J]. Dalton Transactions, 2012, 41(24): 7212–7217.

    Article  CAS  PubMed  Google Scholar 

  30. Su P, Zhu Z, Wang J, et al. A biomolecule-based fluorescence chemosensor for sequential detection of Ag+ and H2S in 100% aqueous solution and living cells [J]. Sensors and Actuators B: Chemical, 2018, 273: 93–100.

    Article  CAS  Google Scholar 

  31. Zhang Y, Wang D, Sun C, et al. A simple 2,6-diphenylpyridine-based fluorescence “turn-on” chemosensor for Ag+ with a high luminescence quantum yield [J]. Dyes and Pigments, 2017, 141: 202–208.

    Article  CAS  Google Scholar 

  32. Cui W, Wang L, Xiang G, et al. A colorimetric and fluorescence “turn-off” chemosensor for the detection of silver ion based on a conjugated polymer containing 2,3-di(pyridin-2-yl)quinoxaline [J]. Sensors and Actuators B: Chemical, 2015, 207: 281–290.

    Article  CAS  Google Scholar 

  33. Li W T, Wu G Y, Qu W J, et al. A colorimetric and reversible fluorescent chemosensor for Ag+ in aqueous solution and its application in Implication logic gate [J]. Sensors and Actuators B: Chemical, 2017, 239: 671–678.

    Article  CAS  Google Scholar 

  34. Velmurugan K, Thamilselvan A, Antony R, et al. Imidazoloquinoline bearing thiol probe as fluorescent electrochemical sensing of Ag and relay recognition of proline [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 333: 130–141.

    Article  CAS  Google Scholar 

  35. Saitoh T, Ichikawa J. Bis(triarylmethylium)-mediated diaryl ether synthesis: Oxidative arylation of phenols with N, N-dialkyl-4-phenylthioanilines [J]. Journal of the American Chemical Society, 2005, 127(27): 9696–9697.

    Article  CAS  PubMed  Google Scholar 

  36. Lo W S, Zhang J, Wong W T, et al. Highly luminescent Sm (I) complexes with intraligand charge-transfer sensitization and the effect of solvent polarity on their luminescent properties [J]. Inorganic Chemistry, 2015, 54(8): 3725–3727.

    Article  CAS  PubMed  Google Scholar 

  37. Smolyar N N, Yutilov Y M. Cyclizations of monocyclic 5-nitropyridin-2(1H)-ones [J]. Russian Journal of Organic Chemistry, 2008, 44(8): 1205–1210.

    Article  CAS  Google Scholar 

  38. Brouwer A M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report) [J]. Pure and Applied Chemistry, 2011, 83(12): 2213–2228.

    Article  CAS  Google Scholar 

  39. Zhang Q, Luo L, Xu H, et al. Design, synthesis, linear and nonlinear photophysical properties of novel pyrimidine-based imidazole derivatives [J]. New Journal of Chemistry, 2016, 40(4): 3456–3463.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Yan.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (21401144), the Natural Science Foundation of Hubei Province (2013CFB236), and the Independent Research Discipline Cross-funding of Wuhan University (2042017kf0215)

Biography: LIU Yanhong, female, Master candidate, research direction: fluorescent probes and their applications in live cell imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yu, B., Zhu, Q. et al. Pyrazole-Triazine Conjugate as Highly Selective and Sensitive Fluorescence Probe for Silver (I) Detection and Its Imaging in Living Cells. Wuhan Univ. J. Nat. Sci. 24, 409–416 (2019). https://doi.org/10.1007/s11859-019-1414-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-019-1414-6

Key words

CLC number

Navigation