Skip to main content
Log in

A structure theorem for almost low-degree functions on the slice

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The Fourier-Walsh expansion of a Boolean function f: {0, 1}n → {0, 1} is its unique representation as a multilinear polynomial. The Kindler-Safra theorem (2002) asserts that if in the expansion of f, the total weight on coefficients beyond degree k is very small, then f can be approximated by a Boolean-valued function depending on at most O(2k) variables.

In this paper we prove a similar theorem for Boolean functions whose domain is the ‘slice’ \(\left({\matrix{{\left[n \right]} \cr {pn} \cr}} \right) = {\rm{\{}}x \in {{\rm{\{}}0,1{\rm{\}}}^n}:\sum\nolimits_i {{x_i} = pn} {\rm{\}}}\), where 0 ≪ p ≪ 1, with respect to their unique representation as harmonic multilinear polynomials. We show that if in the representation of \(f:\left({\matrix{{\left[n \right]} \cr {pn} \cr}} \right) \to {\rm{\{}}0,1{\rm{\}}}\), the total weight beyond degree k is at most ϵ, where ϵ =min(p, 1 − p)O(k), then f can be O(ϵ)-approximated by a degree-k Boolean function on the slice, which in turn depends on O(2k) coordinates. This proves a conjecture of Filmus, Kindler, Mossel, and Wimmer (2015). Our proof relies on hypercontractivity, along with a novel kind of a shifting procedure.

In addition, we show that the approximation rate in the Kindler-Safra theorem can be improved from ϵ + exp(O(k))ϵ5/4 to ϵ + ϵ2(2 ln(1/ϵ))k/k!, which is tight in terms of the dependence on ϵ and misses at most a factor of 2O(k) in the lower-order term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ahlswede and L. H. Khachatrian, The complete intersection theorem for systems of unite sets, European Journal of Combinatorics 18 (1997), 125–136.

    Article  MathSciNet  Google Scholar 

  2. N. Alon, I. Dinur, E. Friedgut and B. Sudakov, Graph products, Fourier analysis and spectral techniques, Geometric and Functional Analysis 14 (2004), 913–940.

    Article  MathSciNet  Google Scholar 

  3. I. Area, D. K. Dimitrov, E. Godoy and A. Ronveaux, Zeros of Gegenbauer and Hermite polynomials and connection coefficients, Mathematics of Computation 73 (2004), 1937–1951.

    Article  MathSciNet  Google Scholar 

  4. B. Bollobás, B. P. Narayanan and A. M. Raigorodskii, On the stability of the Erdős-KoRado theorem, Journal of Combinatorial Theory. Series A 137 (2016), 64–78.

    Article  MathSciNet  Google Scholar 

  5. A. Bonami, Etude des coefficients Fourier des fonctiones de Lp(G), Université de Grenoble. Annales de l’Institut Fourier 20 (1970), 335–402.

    Article  MathSciNet  Google Scholar 

  6. J. Bourgain, J. Kahn, G. Kalai, Y. Katznelson and N. Linial, The influence of variables in product spaces, Israel Journal of Mathematics 77 (1992), 55–64.

    Article  MathSciNet  Google Scholar 

  7. J. Chiarelli, P. Hatami and M. Saks, An asymptotically tight bound on the number of relevant variables in a bounded degree Boolean function, Combinatorica 40 (2020), 237–244.

    Article  MathSciNet  Google Scholar 

  8. S. Das and T. Tran, Removal and stability for Erdős-Ko-Rado, SIAM Journal on Discrete Mathematics 30(2) (2016), 1102–1114.

    Article  MathSciNet  Google Scholar 

  9. I. Dinur, The PCP theorem by gap amplification, Journal of the ACM 54 (2007), 1–44.

    Article  MathSciNet  Google Scholar 

  10. I. Dinur, Y. Filmus and P. Harsha, Analyzing Boolean functions on the biased hypercube via higher-dimensional agreement tests, in Proceedings of ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 2019, pp. 2124–2133.

    MATH  Google Scholar 

  11. I. Dinur, Y. Filmus and P. Harsha, Low degree almost Boolean functions are sparse juntas, preprint, https://arxiv.org/abs/1711.09428.

  12. D. Ellis, E. Friedgut and H. Pilpel, Intersecting families of permutations, Journal of the American Mathematical Society 24 (2011), 649–682.

    Article  MathSciNet  Google Scholar 

  13. D. Ellis, N. Keller and N. Lifshitz, Stability versions of Erdős-Ko-Rado type theorems via isoperimetry, Journal of the European Mathematical Society 21 (2019), 3857–3902.

    Article  MathSciNet  Google Scholar 

  14. D. Falik and E. Friedgut, Between Arrow and Gibbard-Satterthwaite: A representation theoretic approach, Israel Journal of Mathematics 201(1) (2014), 247–297.

    Article  MathSciNet  Google Scholar 

  15. Y. Filmus, An orthogonal basis for functions over a slice of the Boolean cube, Electronic Journal of Combinatorics 23 (2016), Article no. 1.23.

    Article  Google Scholar 

  16. Y. Filmus, Friedgut-Kalai-Naor theorem for slices of the Boolean cube, Chicago Journal of Theoretical Computer Science 2016 (2016), Article no. 14.

    MathSciNet  MATH  Google Scholar 

  17. Y. Filmus and F. Ihringer, Boolean constant degree functions on the slice are juntas, Discrete Mathematics 342 (2019), Article no. 111614.

  18. Y. Filmus, G. Kindler, E. Mossel and K. Wimmer, Invariance principle on the slice, ACM Transactions on Computation Theory 10 (2018), Article no. 11.

  19. Y. Filmus and E. Mossel, Harmonicity and invariance on slices of the Boolean cube, in 31st Conference on Computational Complexity, Leibniz International Proceedings in Informatics, Vol. 50, Schloss Dagstuhl, Leibniz Zentrum für Informatik, Wadern, 2016, pp. 16.1–16.16.

    Google Scholar 

  20. Y. Filmus and E. Mossel, Harmonicity and invariance on slices of the Boolean cube, Probability Thory and Relted Fields 175 (2019), 721–782.

    Article  MathSciNet  Google Scholar 

  21. P. Frankl, The shifting technique in extremal set theory, in Surveys in Combinatorics, London Mathematical Society Lecture Note Series, Vol. 123, Cambridge University Press, Cambridge, 1987, pp. 81–110.

    Google Scholar 

  22. P. Frankl and R. L. Graham, Old and new proofs of the Erdos-Ko-Rado theorem Journal of Sichuan University. Natural Science Edition 26 (1989), 112–122.

    MathSciNet  MATH  Google Scholar 

  23. P. Frankl and N. Tokushige, Invitation to intersection problems for finite sets, Journal of Combinatorial Theory. Series A 144 (2016), 157–211.

    Article  MathSciNet  Google Scholar 

  24. E. Friedgut, Boolean functions with low average sensitivity depend on few coordinates, Combinatorica 18(1) (1998), 27–35.

    Article  MathSciNet  Google Scholar 

  25. E. Friedgut, On the measure of intersecting families, uniqueness and stability, Combinatorica 28 (2008), 503–528.

    Article  MathSciNet  Google Scholar 

  26. E. Friedgut, G. Kalai and A. Naor, Boolean functions whose Fourier transform is concentrated on the first two levels, Advances in Applied Mathematics 29 (2002), 427–437.

    Article  MathSciNet  Google Scholar 

  27. M. Ghandehari and H. Hatami, Fourier analysis and large independent sets in powers of complete graphs, Journal of Combinatorial Theory. Series B 98(1) (2008), 164–172.

    Article  MathSciNet  Google Scholar 

  28. B. Graham and G. R. Grimmett, Influence and sharp-threshold theorems for monotonic measures, Annals of Probability 34 (2006), 1726–1745.

    Article  MathSciNet  Google Scholar 

  29. J. Jendrej, K. Oleszkiewicz and J. O. Wojtaszczyk, On some extensions of the FKN theorem, Theory of Computation 11 (2015), 445–469.

    Article  MathSciNet  Google Scholar 

  30. J. Kahn, G. Kalai and N. Linial, The influence of variables on Boolean functions, in 29th Annual Symposium on Foundations of Computer Science, Institute of Electrical and Electronics Engineers, Los Alamitos, CA, 1988, pp. 68–80.

    Google Scholar 

  31. G. Kalai, A Fourier-theoretic perspective on the Condorcet paradox and Arrow’s theorem, Advances in Applied Mathematics 29(3) (2002), 412–426.

    Article  MathSciNet  Google Scholar 

  32. I. Karpas, Two results on union-closed families, https://arxiv.org/abs/1708.01434.

  33. G. Kindler and S. Safra, Noise-resistant Boolean functions are juntas, manuscript, 2002.

  34. T.-Y. Lee and H.-T. Yau, Logarithmic Sobolev inequality for some models of random walks, Annals of Probability 26 (1998), 1855–1873.

    Article  MathSciNet  Google Scholar 

  35. A. Montanaro and T. Osborne, Quantum Boolean functions, Chicago Journal of Theoretical Computer Science 2010 (2010), Article no. 1.

    Article  MathSciNet  Google Scholar 

  36. E. Mossel, R. O’Donnell and K. Oleszkiewicz, Noise stability of functions with low influences: Invariance and optimality, Annals of Mathematics 175 (2012), 1283–1327.

    Article  MathSciNet  Google Scholar 

  37. P. Nayar, FKN theorem on the biased cube, Colloquium Mathematicum 137 (2014), 253–261.

    Article  MathSciNet  Google Scholar 

  38. N. Nisan and M. Szegedy, On the degree of Boolean functions as real polynomials, Computational Complexity 4 (1994), 301–313.

    Article  MathSciNet  Google Scholar 

  39. R. O’Donnell, Analysis of Boolean Functions, Cambridge University Press, New York, 2014.

    Book  Google Scholar 

  40. R. O’Donnell and K. Wimmer, KKL, Kruskal-Katona, and monotone nets, SIAM Journal on Computing 42 (2013), 2375–2399.

    Article  MathSciNet  Google Scholar 

  41. A. Panconesi and A. Srinivasan, Randomized distributed edge coloring via an extension of the Chernoff-Hoeffding bounds, SIAM Journal on Computing 26 (1997), 350–368.

    Article  MathSciNet  Google Scholar 

  42. A. Rubinstein, Boolean functions whose Fourier transform is concentrated on pair-wise disjoint subsets of the inputs, M. Sc. thesis, Tel Aviv University, 2012.

  43. A. Samorodnitsky, On the entropy of a noisy function, Institute of Electrical and Electronics Engineers Transactions on Information Theory 62 (2016), 5446–5464.

    Article  MathSciNet  Google Scholar 

  44. M. K. Srinivasan, Symmetric chains, Gelfand-Tsetlin chains, and the Terwilliger algebra of the binary Hamming scheme, Journal of Algebraic Combinatorics 34 (2011), 301–322.

    Article  MathSciNet  Google Scholar 

  45. G. Szego, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, RI, 1975.

    Google Scholar 

  46. J. Wellens, A tighter bound on the number of relevant variables in a bounded degree Boolean function, https://arxiv.org/abs/1903.08214.

  47. K. Wimmer, Low influence functions over slices of the Boolean hypercube depend on few coordinates, in IEEE 29th Conference on Computational Complexity-CCC 2014, IEEE Computer Society, Los Alamitos, CA, 2014, pp. 120–131.

    Google Scholar 

Download references

Acknowledgements

We are deeply grateful to Yuval Filmus for numerous helpful comments and suggestions, and wish to thank Guy Kindler for explaining to us some aspects of his work [33]. We are also grateful to the anonymous referee for constructive comments which helped us to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Keller.

Additional information

Research supported by the Israel Science Foundation (grants no. 402/13 and 1612/17) and the Binational US-Israel Science Foundation (grant no. 2014290).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, N., Klein, O. A structure theorem for almost low-degree functions on the slice. Isr. J. Math. 240, 179–221 (2020). https://doi.org/10.1007/s11856-020-2062-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2062-4

Navigation