Skip to main content

On the Modulo Degree Complexity of Boolean Functions

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10392))

Included in the following conference series:

  • 1553 Accesses

Abstract

For each integer \(m\ge 2\), every Boolean function f can be expressed as a unique multilinear polynomial modulo m, and the degree of this multilinear polynomial is called its modulo m degree. In this paper we investigate the modulo degree complexity of total Boolean functions initiated by Parikshit Gopalan et al. [8], in which they asked the following question: whether the degree complexity of a Boolean function is polynomially related with its modulo m degree. For m be a power of primes, it is already known that the module m degree can be arbitrarily smaller compare to the degree complexity (see Sect. 2 for details). When m has at least two distinct prime factors, the question remains open. Towards this question, our results include: (1) we obtain some nontrivial equivalent forms of this question; (2) we affirm this question for some special classes of functions; (3) we prove a no-go theorem, explaining why this problem is difficult to attack from the computational complexity point of view; (4) we show a super-linear separation between the degree complexity and the modulo m degree.

This work was supported in part by the National Natural Science Foundation of China Grant 61433014, 61502449, 61602440, the 973 Program of China Grants No. 2016YFB1000201 and the China National Program for support of Top-notch Young Professionals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aspnes, J., Beigel, R., Furst, M.L., Rudich, S.: The expressive power of voting polynomials. Combinatorica 14(2), 135–148 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beigel, R., Reingold, N., Spielman, D.A.: The perceptron strikes back. In: Proceedings of the Sixth Annual Structure in Complexity Theory Conference, pp. 286–291 (1991)

    Google Scholar 

  3. Bhatnagar, N., Gopalan, P., Lipton, R.J.: Symmetric polynomials over z\(_{{m}}\) and simultaneous communication protocols. J. Comput. Syst. Sci. 72(2), 252–285 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buhrman, H., De Wolf, R.: Complexity measures and decision tree complexity: a survey. Theor. Comput. Sci. 288(1), 21–43 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Efremenko, K.: 3-query locally decodable codes of subexponential length. SIAM J. Comput. 41(6), 1694–1703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gopalan, P.: Computing with Polynomials over Composites. Ph.D. thesis (2006)

    Google Scholar 

  7. Gopalan, P.: Constructing ramsey graphs from boolean function representations. Combinatorica 34(2), 173–206 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gopalan, P., Shpilka, A., Lovett, S.: The complexity of boolean functions in different characteristics. Comput. Complex. 19(2), 235–263 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grolmusz, V.: Superpolynomial size set-systems with restricted intersections mod 6 and explicit ramsey graphs. Combinatorica 20(1), 71–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grolmusz, V.: Constructing set systems with prescribed intersection sizes. J. Algorithms 44(2), 321–337 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the sensitivity conjecture. Theor. Comput. Grad. Surv. 4, 1–27 (2011)

    Google Scholar 

  12. Klivans, A.R., Servedio, R.A.: Learning DNF in time \(2^{\tilde{o}(n^{1/3})}\). J. Comput. Syst. Sci. 68(2), 303–318 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kushilevitz, E., Mansour, Y.: Learning decision trees using the fourier spectrum. SIAM J. Comput. 22(6), 1331–1348 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, C.J., Lokam, S.V., Tsai, S.C., Yang, M.C.: Restrictions of nondegenerate boolean functions and degree lower bounds over different rings. In: Proceedings of IEEE International Symposium on Information Theory, pp. 501–505 (2015)

    Google Scholar 

  15. Lin, C., Zhang, S.: Sensitivity conjecture and log-rank conjecture for functions with small alternating numbers. CoRR, abs/1602.06627 (2016)

    Google Scholar 

  16. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, fourier transform, and learnability. J. ACM 40(3), 607–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Midrijanis, G.: Exact quantum query complexity for total boolean functions. arXiv preprint quant-ph/0403168 (2004)

  18. Mossel, E., O’Donnell, R., Servedio, R.A.: Learning juntas. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 206–212 (2003)

    Google Scholar 

  19. Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials. Comput. Complex. 4, 301–313 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Razborov, A.A.: Lower bounds for the size of circuits of bounded depth with basis \(\{\wedge,\oplus \}\). Math. Notes Acad. Sci. USSR 41, 333–338 (1987)

    MATH  Google Scholar 

  21. Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean circuit complexity. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp. 77–82 (1987)

    Google Scholar 

  22. Sun, X.: An improved lower bound on the sensitivity complexity of graph properties. Theor. Comput. Sci. 412(29), 3524–3529 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tsang, H.Y., Wong, C.H., Xie, N., Zhang, S.: Fourier sparsity, spectral norm, and the log-rank conjecture. In: Proceedings of 54th Annual IEEE Symposium on Foundations of Computer Science, pp. 658–667 (2013)

    Google Scholar 

  24. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theor. Comput. Sci. 47, 85–93 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Viola, E.: The sum of D small-bias generators fools polynomials of degree D. Comput. Complex. 18(2), 209–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewer for pointing out the better construction in Theorem 4, and Shachar Lovett for providing us the simple proof of Theorem 7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, Q., Sun, X. (2017). On the Modulo Degree Complexity of Boolean Functions. In: Cao, Y., Chen, J. (eds) Computing and Combinatorics. COCOON 2017. Lecture Notes in Computer Science(), vol 10392. Springer, Cham. https://doi.org/10.1007/978-3-319-62389-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62389-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62388-7

  • Online ISBN: 978-3-319-62389-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics