Skip to main content
Log in

Categorification of Seidel’s representation

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Two natural symplectic constructions, the Lagrangian suspension and Seidel’s quantum representation of the fundamental group of the group of Hamiltonian diffeomorphisms, Ham(M), with (M, ω) a monotone symplectic manifold, admit categorifications as actions of the fundamental groupoid Π(Ham(M)) on a cobordism category recently introduced in [BC14] and, respectively, on a monotone variant of the derived Fukaya category. We show that the functor constructed in [BC14] that maps the cobordism category to the derived Fukaya category is equivariant with respect to these actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Akveld and D. Salamon, Loops of Lagrangian submanifolds and pseudoholomorphic discs, Geometric and Functional Analysis 11 (2001), 609–650.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Arnol’d, Lagrange and Legendre cobordisms. I, Akademiya Nauk SSSR. Funktsional’nyĭ Analiz i ego Prilozheniya 14 (1980), 1–13, 96.

    MathSciNet  MATH  Google Scholar 

  3. V. Arnol’d, Lagrange and Legendre cobordisms. II, Akademiya Nauk SSSR. Funktsional’nyĭ Analiz i ego Prilozheniya 14 (1980), 8–17, 95.

    MathSciNet  MATH  Google Scholar 

  4. M. Audin, Quelques calculs en cobordisme lagrangien, Université de Grenoble. Annales de l’Institut Fourier 35 (1985), 159–194.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Biran and O. Cornea, Quantum structures for Lagrangian submanifolds, Preprint (2007). http://arxiv.org/pdf/0708.4221.

  6. P. Biran and O. Cornea, Rigidity and uniruling for Lagrangian submanifolds, Geometry and Topology 13 (2009), 2881–2989.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Biran and O. Cornea, Lagrangian cobordism I, Journal of the American Mathematical Society (2013), 295–340.

  8. P. Biran and O. Cornea, Lagrangian cobordism and Fukaya Categories, GAFA 24 (2014), 1731–1830.

    MathSciNet  MATH  Google Scholar 

  9. F. Charette, Quelques propriétés des sous-variétés lagrangiennes monotones: Rayon de gromov et morphisme de seidel, Ph.D. thesis, University of Montreal, May 2012.

  10. Y. Chekanov, Lagrangian embeddings and Lagrangian cobordism, in Topics in Singularity Theory, American Mathematical Society Transactions Series 2, Vol. 180, American Mathematical Society, Providence, RI, 1997, pp. 13–23.

    Google Scholar 

  11. Y. Eliashberg, Cobordisme des solutions de relations différentielles, South Rhone seminar on geometry, I (Lyon, 1983), Travaux en Cours, Hermann, Paris, 1984, pp. 17–31.

    Google Scholar 

  12. L. Haug, On the quantum homology of real Lagrangians in Fano toric manifolds, International Mathematics Research Notices (2013), no. 14, 3171–3220.

  13. S. Hu and F. Lalonde, A relative Seidel morphism and the Albers map, Transactions of the American Mathematical Society 362 (2010), 1135–1168.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Hu, F. Lalonde and R. Leclercq, Homological Lagrangian monodromy, Geometry and Topology 15 (2011), 1617–1650.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Hyvrier, Lagrangian circle actions, Preprint, 2013; http://arxiv.org/abs/1307.8196.

  16. R. Leclercq, Spectral invariants in lagrangian floer theory, Journal of Modern Dynamics 2 (2008), 249–286.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. MacLane, Categories for the Working Mathematician, Graduate texts in mathematics, Springer, Berlin, 1998.

    Google Scholar 

  18. D. McDuff and D. Salamon, J-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, Vol. 52, AmericanMathematical Society, Providence, RI, 2004.

    MATH  Google Scholar 

  19. D. McDuff and S. Tolman, Topological properties of Hamiltonian circle actions, IMRP. International Mathematics Research Papers (2006), 72826, 1–77. MR 2210662 (2007e:53115)

  20. L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001. MR 1826128 (2002g:53157)

  21. P. Seidel, Homological mirror symmetry for the quartic surface, Memoirs of the American Mathematical Society, vol. 1116, 2015.

  22. P. Seidel, π 1 of symplectic automorphism groups and invertibles in quantum homology rings, Geometric and Functional Analysis 7 (1997), 1046–1095.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Seidel, Fukaya categories and Picard-Lefschetz Theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008.

    Google Scholar 

  24. N. Sheridan, Homological mirror symmetry for Calabi-Yau hypersurfaces in projective space, Inventiones mathematicae 199 (2015), 1–186.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Charette.

Additional information

The first author was supported by a University of Montreal End of doctoral studies grant, and TIDY and Raymond and Beverly Sackler fellowships from Tel Aviv University.

The second author was supported by an NSERC Discovery grant and a FQRNT Group Research grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charette, F., Cornea, O. Categorification of Seidel’s representation. Isr. J. Math. 211, 67–104 (2016). https://doi.org/10.1007/s11856-015-1261-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1261-x

Keywords

Navigation