Skip to main content
Log in

Effect of Ti Content on Microstructure Evolution and Mechanical Properties of High-Strength Anti-seismic Rebar

  • "Phase Transformation and Microstructure Evolution during Thermomechanical Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructure, precipitates, fracture morphology, and mechanical properties of both the Ti microalloyed rebars during the rolling process and the final product were characterized using optical microscopy, scanning electron microscopy, transmission electron microscopy, and a universal tensile testing machine. The results indicated that the precipitation of Ti in deformed austenite can inhibit the recrystallization of austenite and refine its grains. The stability of undercooled austenite improves with an increase in Ti content, leading to a reduction in the transformation temperature of ferrite (F) and pearlite (P), refinement of the microstructure, and promotion of bainite (B) transformation. The reduction in F grain size and increase in B are advantageous for improving the strength and tensile/yield of rebars. However, the elongation at maximum force and elongation after fracture decrease. When the Ti content exceeds 0.06%, the strength change of the rebar is primarily governed by the B. A continuous increase in stress during the tensile process, the disappearance of the yield plateau, and a decrease in ductility are caused by the increase in dislocation density and precipitates in the rebar. Better mechanical properties are exhibited by the rebar when the Ti content is 0.028%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Z.Y. Zeng, C.R. Li, Z.Y. Li, Y.Q. Zhai, J. Wang, and Z.S. Li, Mater. Sci. Eng. A 840, 142929. https://doi.org/10.1016/j.msea.2022.142929 (2022).

    Article  Google Scholar 

  2. W. Choi, H. Um, H. Yi, and N. Kang, Mater. Des. 219, 110766. https://doi.org/10.1016/j.matdes.2022.110766 (2022).

    Article  Google Scholar 

  3. P.P. Wang, Study on the Technology of Niobium-Vanadium Micro-Alloying Hot Rolled Ribbed Rebar (Xi’an University of Architecture and Technology, Xian, 2019).

    Google Scholar 

  4. G. Xu, X.L. Gan, G.J. Ma, F. Luo, and H. Zou, Mater. Des. 31, 2891. https://doi.org/10.1016/j.matdes.2009.12.032 (2010).

    Article  Google Scholar 

  5. Z.H. Wu, W. Zheng, G.Q. Li, H. Matsuura, and F. Tsukihashi, Metall. Mater. Trans. B 46, 1226. https://doi.org/10.1007/s11663-015-0311-4 (2015).

    Article  Google Scholar 

  6. B. López, and J.M. Rodriguez-Ibabe, Metall. Mater. Trans. A 48, 1. https://doi.org/10.1007/s11661-016-3727-9 (2017).

    Article  Google Scholar 

  7. X.L. Gan, Q. Yuan, G. Zhao, H.J. Hu, J.Y. Tian, and G. Xu, Steel Res. Int. 90, 1. https://doi.org/10.1002/srin.201900040 (2019).

    Article  Google Scholar 

  8. S.P. Chaudhuri, R.K. Mahanti, C.S. Sivaramakrishnan, and M.P. Singh, Mater. Des. 23, 489. https://doi.org/10.1016/S0261-3069(02)00011-0 (2002).

    Article  Google Scholar 

  9. Z.W. Peng, L.J. Li, J.X. Gao, and X.D. Huo, Mater. Sci. Eng. A 657, 413. https://doi.org/10.1016/j.msea.2016.01.064 (2016).

    Article  Google Scholar 

  10. S.Z. Wang, Z.J. Gao, G.L. Wu, and X.P. Mao, Int. J. Min. Met. Mater. 9, 45. https://doi.org/10.1007/s12613-021-2399-7 (2022).

    Article  Google Scholar 

  11. Q.Y. Sha, and Z.Q. Sun, Mater. Sci. Eng. A 523, 77. https://doi.org/10.1016/j.msea.2009.05.037 (2009).

    Article  Google Scholar 

  12. M. Ohno, C. Murakami, K. Matsuura, and K. Isobe, ISIJ Int. 52, 1832. https://doi.org/10.2355/isijinternational.52.1832 (2012).

    Article  Google Scholar 

  13. X. Luo, C.S. Yang, Y.L. Kang, and J.H. Li, Chin. J. Eng. 38, 230. https://doi.org/10.13374/j.issn2095-9389.2016.02.011 (2016).

    Article  Google Scholar 

  14. N.J. Petch, J. Iron Steel Inst. 174, 25 (1953).

    Google Scholar 

  15. W.B. Morrison, ASM-Trans. 59, 824 (1966).

    Google Scholar 

  16. A.T. Davenport, L.C. Brossard, and R.E. Miner, JOM 27, 21–27. https://doi.org/10.1007/BF03355951 (1975).

    Article  Google Scholar 

  17. A.T. Davenport, F.G. Berry, and R.W.K. Honeycombe, Met. Sci. 2, 04. https://doi.org/10.1179/030634568790443341 (1967).

    Article  Google Scholar 

  18. H.W. Yen, P.Y. Chen, C.Y. Huang, and J.R. Yang, Acta Mater. 59, 6264. https://doi.org/10.1016/j.actamat.2011.06.037 (2011).

    Article  Google Scholar 

  19. Z.G. Peng, L.J. Li, S.J. Chen, X.D. Huo, and J.X. Gao, Mater. Design. 108, 289. https://doi.org/10.1016/j.matdes.2016.06.108 (2016).

    Article  Google Scholar 

  20. X.P. Mao, Titanium Microalloyed Steel (Metallurgical Industry Press, Beijing, 2006), pp. 181–185.

    Google Scholar 

  21. Z.Z. Liu, Niobium Science & Technology (Metallurgical Industry Press, Beijing, 2019), pp115–128.

    Google Scholar 

  22. P.K. Patra, S. Sam, M. Singhai, S.S. Hazra, G.D.J. Ram, and S.R. Bakshi, Trans. Indian Inst. Met. 70, 1773. https://doi.org/10.1007/s12666-016-0975-8 (2017).

    Article  Google Scholar 

  23. S.H. He, B.B. He, K.Y. Zhu, and M.X. Huang, Acta Mater. 149, 46. https://doi.org/10.1016/j.actamat.2018.02.023 (2018).

    Article  Google Scholar 

  24. N. Li, W. Kingkam, R. Han, M. Tang, and C. Zhao, Mater. Res. Express 7, 066521. https://doi.org/10.1088/2053-1591/ab9b14 (2020).

    Article  Google Scholar 

  25. A. Karmakar, S. Biswas, S. Mukherjee, D. Chakrabarti, and V. Kumar, Mater. Sci. Eng. A 690, 158. https://doi.org/10.1016/j.msea.2017.02.101 (2017).

    Article  Google Scholar 

  26. S. Ghosh, and S. Mula, Mater. Sci. Eng. A 646, 218. https://doi.org/10.1016/j.msea.2015.08.072 (2015).

    Article  Google Scholar 

  27. V.V. Natarajan, S. Liu, V.S.A. Challa, R.D.K. Misra, D.M. Sidorenko, M.D. Mulholland, M. Manohar, and J.E. Hartmann, Mater. Sci. Eng. A 671, 254. https://doi.org/10.1016/j.msea.2016.06.061 (2016).

    Article  Google Scholar 

  28. S. Vervynckt, K. Verbeken, P. Thibaux, and Y. Houbaert, Mater. Sci. Eng. A 528, 5519. https://doi.org/10.2355/isijinternational.49.911 (2011).

    Article  Google Scholar 

  29. H. Buken, P. Sherstnev, and E. Kozeschnik, Mater. Sci. Forum 879, 2463. https://doi.org/10.4028/www.scientific.net/MSF.879.2463 (2016).

    Article  Google Scholar 

  30. S. Vervynckt, K. Verbeken, P. Thibaux, M. Liebeherr, and Y. Houbaert, ISIJ Int. 49, 469. https://doi.org/10.2355/isijinternational.49.911 (2009).

    Article  Google Scholar 

  31. W.F. Shen, C. Zhang, L.W. Zhang, Y.N. Xia, Y.F. Xu, X.H. Shi, and J. Mater, Res. 32, 656. https://doi.org/10.1557/jmr.2016.486 (2017).

    Article  Google Scholar 

  32. D.R.N. Maubane, C.W. Siyasiya, K.M. Banks, and W.E. Stumpf, Mater. Sci. Forum 941, 46. https://doi.org/10.4028/www.scientific.net/MSF.941.46 (2018).

    Article  Google Scholar 

  33. S.F. Medina, and J.E. Mancilla, ISIJ Int. 36, 1063. https://doi.org/10.2355/isijinternational.36.1063 (1996).

    Article  Google Scholar 

  34. X.P. Mao, X.D. Huo, X.J. Sun, and Y.Z. Chai, J. Mater. Process Tech. 210, 1660. https://doi.org/10.1016/j.jmatprotec.2010.05.018 (2010).

    Article  Google Scholar 

  35. R. Han, G. Yang, X. Sun, G. Zhao, X. Liang, and X. Zhu, Acta Metall. Sin. 58, 1589. https://doi.org/10.11900/0412.1961.2021.00560 (2022).

    Article  Google Scholar 

  36. S. Shanmugam, R.D.K. Misra, T. Mannering, D. Panda, and S.G. Jansto, Mater. Sci. Eng. A 437, 436. https://doi.org/10.1016/j.msea.2006.08.007 (2006).

    Article  Google Scholar 

  37. C. Lu, Research on the Relationship Between Isothermal Transformation and Precipitation in Low Carbon Ti/Mo Steel (Jangsu University, Zhenjiang, 2022).

    Google Scholar 

  38. A.M. Ravi, J. Sietsma, and M.J. Santofimia, Acta Mater. 105, 155. https://doi.org/10.1016/j.actamat.2015.11.044 (2016).

    Article  Google Scholar 

  39. S.M.C. Van Bohemen, Metall. Mater. Trans. A 41, 285. https://doi.org/10.1007/s11661-009-0106-9 (2010).

    Article  Google Scholar 

  40. T. Teshima, M. Kosaka, K. Ushioda, N. Koga, and N. Nakada, Mater. Sci. Eng. A 679, 223. https://doi.org/10.1016/j.msea.2016.10.018 (2017).

    Article  Google Scholar 

  41. P.W. Xu, Y. Liang, J. Lia, and C. Meng, Mater. Sci. Eng. A 745, 176. https://doi.org/10.1016/j.msea.2018.12.069 (2019).

    Article  Google Scholar 

  42. G. Mandal, S.K. Ghosh, S. Bera, and S. Mukherjee, Mater. Sci. Eng. A 676, 56. https://doi.org/10.1016/j.msea.2016.08.094 (2016).

    Article  Google Scholar 

  43. B. Avishan, C. Garcia-Mateo, L. Morales-Rivas, S. Yazdani, and F.G. Caballero, J. Mater. Sci. 48, 6121. https://doi.org/10.1007/s10853-013-7408-4 (2013).

    Article  Google Scholar 

  44. X.X. Zhang, G. Xu, X. Wang, D. Embury, O. Bouaziz, G.R. Purdy, and H.S. Zurob, Metall. Mater. Trans. 45, 1352. https://doi.org/10.1007/s11661-013-2079-y (2014).

    Article  Google Scholar 

  45. L.Y. Zhao, Q.F. Wang, G.H. Shi, X.Y. Yang, M.L. Qiao, J.P. Wu, and F.C. Zhang, Mater. Sci. Eng. A 854, 143681. https://doi.org/10.1016/j.msea.2022.143681 (2022).

    Article  Google Scholar 

  46. Y. Hui, H. Pan, N. Zhou, R. Li, W. Li, and K. Liu, Acta Metall. Sin. 51, 1481. https://doi.org/10.11900/0412.1961.2015.00082 (2015).

    Article  Google Scholar 

  47. C. Gu, C. Scott, F. Fazeli, M.J. Gaudet, J. Su, X. Wang, N. Bassim, and H. Zurob, Mat. Sci. Eng. A 880, 145332. https://doi.org/10.1016/j.msea.2023.145332 (2023).

    Article  Google Scholar 

  48. H.B. Cao, and W. Chen, Fusion Eng. Des. 190, 113645. https://doi.org/10.1016/j.fusengdes.2023.113645 (2023).

    Article  Google Scholar 

  49. A. Iza-Mendia, and I. Gutierrez, Mater. Sci. Eng. A 561, 40. https://doi.org/10.1016/j.msea.2012.10.012 (2013).

    Article  Google Scholar 

  50. K. Zhang, X. Sun, Q. Yong, Z. Li, G. Yang, and Y. Li, Acta Metall. Sin. 51, 553. https://doi.org/10.11900/0412.1961.2014.00470 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work has received funding from Jiangsu Yonggang Group Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchun Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Yin, S., Ma, Z. et al. Effect of Ti Content on Microstructure Evolution and Mechanical Properties of High-Strength Anti-seismic Rebar. JOM (2024). https://doi.org/10.1007/s11837-024-06522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06522-5

Navigation