Skip to main content
Log in

Hot-Working Properties of Ni-Based Superalloy GH4169 in Different Initial States

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The hot deformation behaviour of the GH4169 alloy in two different initial states (homogeneous and mixed-crystal states) was investigated by performing isothermal compression tests at different strain rates (0.01-1 s−1) and deformation temperatures (1050-1150 °C). Hot-working diagrams were established for both alloy types, and the microstructural evolution in both alloy types during hot deformation was analysed to determine the corresponding deformation mechanism. The experimental results showed that the peak stress of the homogeneous alloy was lower than that of the mixed-crystal alloy for the same temperature and strain rate. Based on the processing maps, the flow instability domain of the homogeneous alloy exceeded that of the mixed-crystal alloy. The optimal processing parameters of the homogeneous alloy were 0.01-0.1 s−1/1050-1100 °C, and 0.01-0.1 s−1/1050-1080 °C (at a lower strain state) or 1100-1150 °C (at a higher strain state) was optimal for the mixed-crystal alloy. Microstructural analysis revealed that the differences in the hot deformation behaviour of the homogeneous and mixed-crystal alloys were caused by the different initial grain sizes and dynamic recrystallization (DRX) mechanisms. The main DRX nucleation method of the homogeneous alloy was discontinuous DRX, whereas that of the mixed-crystal alloy was continuous DRX and discontinuous DRX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Xu, X.K. Sun, Q.Q. Liu, and W.X. Chen, Hydrogen Permeation Behavior in IN718 and GH761 Superalloys, Metallurgical and Materials Transactions, Phys. Metall. Mater. Sci., 1994, 25, p 539–544. https://doi.org/10.1007/BF02651595

    Article  Google Scholar 

  2. K.V.U. Praveen, G.V.S. Sastry, and V. Singh, Work-Hardening Behavior of the Ni-Fe Based Superalloy IN718, Metallurgical and Materials Transactions, Phys. Metall. Mater. Sci., 2008, 39, p 65–78. https://doi.org/10.1007/s11661-007-9375-3

    Article  CAS  Google Scholar 

  3. Y. Mei, Y. Liu, C. Liu, C. Li, L. Yu, Q. Guo, and H. Li, Effects of Cold Rolling on the Precipitation Kinetics and the Morphology Evolution of Intermediate Phases in Inconel 718 Alloy, J. Alloys Compounds, 2015, 649, p 949–960. https://doi.org/10.1016/j.jallcom.2015.07.149

    Article  CAS  Google Scholar 

  4. K.D. Ramkumar, S. Dev, V. Saxena, A. Choudhary, N. Arivazhagan, and S. Narayanan, Effect of Flux Addition on the Microstructure and Tensile Strength of Dissimilar Weldments Involving Inconel 718 and AISI 416, Mater. Design, 2015, 87, p 663–674. https://doi.org/10.1016/j.matdes.2015.08.075

    Article  CAS  Google Scholar 

  5. X. Yang, W. Li, J. Li, T. Ma, and J. Guo, FEM Analysis of Temperature Distribution and Experimental Study of Microstructure Evolution in Friction Interface of GH4169 Superalloy, Mater. Design, 2015, 84, p 133–143. https://doi.org/10.1016/j.matdes.2015.06.123

    Article  CAS  Google Scholar 

  6. Q. Jia and D. Gu, Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties, J. Alloys Compounds, 2014, 585, p 713–721. https://doi.org/10.1016/j.jallcom.2013.09.171

    Article  CAS  Google Scholar 

  7. G.F. Lovicu, C. Colombo, M. De Sanctis, and R. Valentini, Hydrogen Uptake Enhancement and Accelerated Hydrogen Re-Embrittlement of Cd-Plated AISI 4340 Steel Bolts Coupled with IN718 Nuts, Metall. Mater. Trans. A, 2011, 42(12), p 3577–3580. https://doi.org/10.1007/s11661-011-0880-z

    Article  CAS  Google Scholar 

  8. F. Klocke, V. Bäcker, H. Wegner, B. Feldhaus, H.U. Baron, and R. Hessert, Influence of Process and Geometry Parameters on the Surface Layer State After Roller Burnishing of IN718, Prod. Eng., 2009, 3(4), p 391–399. https://doi.org/10.1007/s11740-009-0182-0

    Article  Google Scholar 

  9. Y.B. Tan, Y.H. Ma, and F. Zhao, Hot Deformation Behavior and Constitutive Modeling of Fine Grained Inconel 718 Superalloy, J. Alloys Compounds, 2018, 741, p 85–96. https://doi.org/10.1016/j.jallcom.2017.12.265

    Article  CAS  Google Scholar 

  10. Z. Wan, Hu. Lianxi, Yu. Sun, T. Wang, and Z. Li, Hot Deformation Behavior and Processing Workability of a Ni-Based Alloy, J. Alloy. Compd., 2018, 769, p 367–375. https://doi.org/10.1016/j.jallcom.2018.08.010

    Article  CAS  Google Scholar 

  11. A. Nicolaÿ, G. Fiorucci, J.M. Franchet, J. Cormier, and N. Bozzolo, Influence of Strain Rate on Subsolvus Dynamic and Post-dynamic Recrystallization Kinetics of Inconel 718, Acta Mater., 2019, 174, p 406–417. https://doi.org/10.1016/j.actamat.2019.05.061

    Article  CAS  Google Scholar 

  12. D. Jia, W. Sun, Xu. Dongsheng, Yu. Lianxu, X. Xin, W. Zhang, and F. Qi, Abnormal Dynamic Recrystallization Behavior of a Nickel Based Superalloy During hot Deformation, J. Alloy. Compd., 2019, 787, p 196–205. https://doi.org/10.1016/j.jallcom.2019.02.055

    Article  CAS  Google Scholar 

  13. S.N. Murty and B.N. Rao, On the Flow Localization Concepts in the Processing Maps of Titanium Alloy Ti–24Al–20Nb, J. Mater. Process. Technol., 2000, 104(1–2), p 103–109. https://doi.org/10.1016/S0924-0136(00)00517-3

    Article  Google Scholar 

  14. Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiros, and W.G. Frazier, Influence of Oxygen Content on the Forging Response of Equiaxed (α+ β) Preform of Ti–6Al–4V: Commercial vs. ELI Grade, J. Mater. Process. Technol., 2001, 108(3), p 320–327. https://doi.org/10.1016/S0924-0136(00)00832-3

    Article  CAS  Google Scholar 

  15. S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, and U. Borah, Work Hardening Characteristics and Microstructural Evolution During Hot Deformation of a Nickel Superalloy at Moderate Strain Rates, J. Alloys Compounds, 2017, 709, p 394–409. https://doi.org/10.1016/j.jallcom.2017.03.158

    Article  CAS  Google Scholar 

  16. S.S. Satheesh Kumar, T. Raghu, P.P. Bhattacharjee, G. Appa Rao, and U. Borah, Constitutive Modeling for Predicting Peak Stress Characteristics During Hot Deformation of Hot Isostatically Processed Nickel-Base Superalloy, J. Mater. Sci., 2015, 50(19), p 6444–6456. https://doi.org/10.1007/s10853-015-9200-0

    Article  CAS  Google Scholar 

  17. J.J. Jonas, C.M. Sellars, W.J. Mc, and G. Tegart, Strength and Structure Hot-Working Conditions, Metall. Rev., 1969, 14, p 1–24. https://doi.org/10.1179/mtlr.1969.14.1.1

    Article  Google Scholar 

  18. X. Xia, P. Sakaris, and H.J. McQueen, Hot Deformation, Dynamic Recovery, and Recrystallisation Behaviour of Aluminium 6061–SiCp Composite, Mater. Sci. Technol., 1994, 10(6), p 487–496. https://doi.org/10.1179/mst.1994.10.6.487

    Article  CAS  Google Scholar 

  19. S.F. Medina and C.A. Hernandez, The Influence of Chemical Composition on Peak Strain of Deformed Austenite in Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44(1), p 149–154. https://doi.org/10.1016/1359-6454(95)00151-0

    Article  CAS  Google Scholar 

  20. Y. Wu, Z. Liu, X. Qin, C. Wang, and L. Zhou, Effect of Initial State on Hot Deformation and Dynamic Recrystallization of Ni-Fe Based Alloy GH984G for Steam Boiler Applications, J. Alloys Compounds, 2019, 795, p 370–384. https://doi.org/10.1016/j.jallcom.2019.05.022

    Article  CAS  Google Scholar 

  21. Y.V.R.K. Prasad, and K.P. Rao, Processing Maps and Rate Controlling Mechanisms of Hot Deformation of Electrolytic Tough Pitch Copper in the Temperature Range 300-950 C, Mater. Sci. Eng. A, 2005, 391(1–2), p 141–150. https://doi.org/10.1016/j.msea.2004.08.049

    Article  CAS  Google Scholar 

  22. Y.V.R.K. Prasad and K.P. Rao, Processing Maps for Hot Deformation of Rolled AZ31 Magnesium Alloy Plate: Anisotropy of Hot Workability, Mater. Sci. Eng. A, 2008, 487(1–2), p 316–327. https://doi.org/10.1016/j.msea.2007.10.038

    Article  CAS  Google Scholar 

  23. L. Wei, Q. Pan, J. Zhou, K. Jia, and Z. Yin, Processing Maps and Flow Instability Analysis of Al-Zn-Mg-Cu-Zr Alloy, J. Central South Univ. (Sci. Technol.), 2013, 44(5), p 1798–1805. 

    CAS  Google Scholar 

  24. V.V. Balasubrahmanyam and Y.V.R.K. Prasad, Deformation Behaviour of Beta Titanium Alloy Ti–10V–4.5 Fe–1.5 Al in Hot Upset Forging, Mater. Sci. Eng. A, 2002, 336(1–2), p 150–158. 

    Article  Google Scholar 

  25. Xu. Yan, Hu. Lianxin, T. Deng, and L. Ye, Hot Deformation Behavior and Processing Map of As-Cast AZ61 Magnesium Alloy, Mater. Sci. Eng., A, 2013, 559, p 528–533. https://doi.org/10.1016/j.msea.2012.08.137

    Article  CAS  Google Scholar 

  26. N. Srinivasan and Y.V.R.K. Prasad, Characterisation of Dynamic Recrystallisation in Nickel Using Processing Map for Hot Deformation, Mater. Sci. Technol., 1992, 8(3), p 206–212. https://doi.org/10.1179/mst.1992.8.3.206

    Article  CAS  Google Scholar 

  27. N. Ravichandran and Y.V.R.K. Prasad, Dynamic Recrystallization During Hot Deformation of Aluminum: A Study Using Processing Maps, Metall. Trans. A, 1991, 22(10), p 2339–2348. https://doi.org/10.1007/BF02665000

    Article  Google Scholar 

  28. S.S. Satheesh Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, and U. Borah, Strain Rate Dependent Microstructural Evolution During Hot Deformation of a Hot Isostatically Processed Nickel Base Superalloy, J. Alloys Compounds, 2016, 681, p 28–42. https://doi.org/10.1016/j.jallcom.2016.04.185

    Article  CAS  Google Scholar 

  29. Q.-Y. Yang, M. Ma, Y.-B. Tan, S. Xiang, F. Zhao, and Y.-L. Liang, Microstructure and Texture Evolution of TB8 Titanium Alloys During Hot Compression, Rare Met., 2021, 40, p 2917–2926. https://doi.org/10.1007/s12598-020-01643-7

    Article  CAS  Google Scholar 

  30. Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li, EBSD Study of a Hot Deformed Nickel-Based Superalloy, J Alloys Compd., 2015, 640, p 101. https://doi.org/10.1016/j.jallcom.2015.04.008

    Article  CAS  Google Scholar 

  31. Y.C. Lin, D.G. He, M.S. Chen, X.Y. Chen, C.Y. Zhao, X. Ma, and Z.L. Long, EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel–Based Superalloy During Hot Compressive Deformation, Mater Des., 2016, 97, p 13. https://doi.org/10.1016/j.matdes.2016.02.052

    Article  CAS  Google Scholar 

  32. H. Zhang, K. Zhang, S. Jiang, H. Zhou, C. Zhao, and X. Yang, Dynamic Recrystallization Behavior of a γ′-Hardened Nickel-Based Superalloy During Hot Deformation, J. Alloys Compounds, 2015, 623, p 374–385. https://doi.org/10.1016/j.jallcom.2014.11.056

    Article  CAS  Google Scholar 

  33. Y. Wu, M. Zhang, X. Xie, F. Lin, and S. Zhao, Dynamic Recrystallization of a New Nickel-Based Alloy for 700 °C A-USC Power Plant Applications with Different Initial States: As-Homogenized and As-Forged, Mater. Sci. Eng. A, 2016, 662, p 283–295. https://doi.org/10.1016/j.msea.2016.03.074

    Article  CAS  Google Scholar 

  34. Y. Wang, W.Z. Shao, L. Zhen, and X.M. Zhang, Microstructure Evolution During Dynamic Recrystallization of Hot Deformed Superalloy 718, Mater. Sci. Eng. A, 2008, 486, p 321–332. https://doi.org/10.1016/j.msea.2007.09.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Central Government Guides Local Science and Technology Development (Grant No. [2019] 4011), the Industrial and Information Development of Guizhou Province (Grant No. [2016] 034), and the Technology Development Project (Grant No. 2017033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Long Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, M., Zhang, ZS., Liang, YL. et al. Hot-Working Properties of Ni-Based Superalloy GH4169 in Different Initial States. J. of Materi Eng and Perform 31, 6333–6348 (2022). https://doi.org/10.1007/s11665-022-06728-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06728-1

Keywords

Navigation