Skip to main content
Log in

Advances in Experimental Studies of Grain Growth in Thin Films

  • Materials Processing and Kinetic Phenomena: In Honor of Carl V. Thompson
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this article, we review recent developments in the experimental study of grain growth in nanocrystalline metallic thin films, emphasizing transmission electron microscopy-based imaging and orientation mapping techniques and highlighting useful experimental and data analytical frameworks for dynamic experiments. Studies of grain growth have fallen short of the scale required to fully characterize the coarsening process, and models still fail to fully capture the true behavior of grain growth in polycrystalline systems as they pertain to geometric, topological and crystallographic metrics. Moreover, existing grain growth studies are either coarse in time and temperature or otherwise limited in scope. Nevertheless, important observations such as the stagnation of thin film grain growth at a universal grain size distribution and the strong correlations between the grain boundary character distributions in thin film and bulk materials motivate larger-scale dynamic studies. Additionally, recent hardware and software advances have removed bottlenecks to large-scale and in situ data acquisition via (1) automated grain boundary segmentation in micrographs, (2) low thermal mass microelectromechanical systems and (3) integrated hardware-software drift correction and data management solutions. We argue that these innovations render thin films a key integrated experimental platform for the next generation of grain growth studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Due to crystal symmetries, many representations of a single misorientation relationship may be equivalent. The term “disorientation” angle is used here to refer to the representation which requires the smallest angle of rotation among a set of symmetrically equivalent misorientation relationships.

  2. This point process is non-Poissonian owing to effective interactions between the triple junctions.

References

  1. C.V. Thompson, Annu. Rev. Mater. Sci. 20, 245 (1990).

    Article  ADS  CAS  Google Scholar 

  2. C.V. Thompson, Annu. Rev. Mater. Sci. 30, 159 (2000).

    Article  ADS  CAS  Google Scholar 

  3. B.E.K.Z.C. Cordero, and C.A. Schuh, Int. Mater. Rev. 61, 495 (2016).

    Article  CAS  Google Scholar 

  4. L.C. Lim, and T. Watanabe, Scr. Metall. 23, 489 (1989).

    Article  Google Scholar 

  5. N.J. Petch, J. Iron Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  6. E. Hall, Proc. Phys. Soc. Sect. B 64, 747 (1951).

    Article  ADS  Google Scholar 

  7. E.M. Lehockey, G. Palumbo, A. Brennenstuhl, and P. Lin, Mater. Res. Soc. Symp. – Proc. 458, 243 (1997).

    Article  CAS  Google Scholar 

  8. T. Liu, S. Xia, Q. Bai, B. Zhou, L. Zhang, Y. Lu, and T. Shoji, Materials 12, 242 (2017).

    Article  ADS  Google Scholar 

  9. E.M. Lehockey, G. Palumbo, P. Lin, and A.M. Brennenstuhl, Scr. Mater. 36, 1211 (1997).

    Article  CAS  Google Scholar 

  10. Y. Mishin, and C. Herzig, Mater. Sci. Eng. 260, 55 (1999).

    Article  Google Scholar 

  11. E.A. Jägle, and E.J. Mittemeijer, Acta Mater. 59, 5775 (2011).

    Article  ADS  Google Scholar 

  12. K. Barmak, X. Liu, A. Darbal, N. T. Nuhfer, D. Choi, T. Sun, A. P. Warren, K. R. Coffey, and M. F. Toney, J. Appl. Phys. 120 (2016).

  13. K. Barmak, A. Darbal, K.J. Ganesh, P.J. Ferreira, J.M. Rickman, T. Sun, B. Yao, A.P. Warren, and K.R. Coffey, J. Vac. Sci. Technol. A 32, 61503 (2014).

    Article  Google Scholar 

  14. T. Sun, B. Yao, A. P. Warren, K. Barmak, M. F. Toney, R. E. Peale, and K. R. Coffey, Phys. Rev. B Condens. Matter Mater. Phys. 81 (2010).

  15. W.W. Mullins, Acta Metall. 6, 414 (1958).

    Article  Google Scholar 

  16. G. Gottstein, and L.S. Shvindlerman, Scr. Mater. 38, 1541 (1998).

    Article  CAS  Google Scholar 

  17. D. Zöllner, and P.R. Rios, Acta Mater. 70, 290 (2014).

    Article  ADS  Google Scholar 

  18. J. Hu, X. Wang, J. Zhang, J. Luo, Z. Zhang, and Z. Shen, J. Materiomics 7, 1007 (2021).

    Article  Google Scholar 

  19. J. Hu, J. Zhang, X. Wang, J. Luo, Z. Zhang, and Z. Shen, J. Materiomics 7, 1014 (2021).

    Article  Google Scholar 

  20. L. Zhang, J. Han, D. J. Srolovitz, and Y. Xiang, Npj Comput. Mater. 7, 1 (2021).

  21. E.A. Holm, and S.M. Foiles, Science 328, 1138 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. M. Hillert, Acta Metall. 13, 227 (1965).

    Article  CAS  Google Scholar 

  23. W. Mullins, J. Appl. Phys. 27, 900 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  24. K. Barmak, E. Eggeling, D. Kinderlehrer, R. Sharp, S. Ta’Asan, A. D. Rollett, and K. R. Coffey, Prog. Mater. Sci. 58, 987 (2013).

  25. P.R. Rios, and D. Zöllner, Mater. Sci. Technol. (UK) 34, 629 (2018).

    Article  ADS  CAS  Google Scholar 

  26. G. Martine La Boissonière, R. Choksi, K. Barmak, and S. Esedoḡlu, Materialia (Oxford) 6, 100280 (2019).

    Article  Google Scholar 

  27. V.E. Fradkov, A.S. Kravchenko, and L.S. Shvindlerman, Scr. Metall. 19, 1291 (1985).

    Article  CAS  Google Scholar 

  28. G.B. Bizana, and L.A. Barrales-Mora, Comput. Mater. Sci. 219, 112009 (2023).

    Article  CAS  Google Scholar 

  29. C.S. Kim, A.D. Rollett, and G.S. Rohrer, Scr. Mater. 54, 1005 (2006).

    Article  CAS  Google Scholar 

  30. G.S. Rohrer, J. Mater. Sci. 46, 5881 (2011).

    Article  ADS  CAS  Google Scholar 

  31. G.S. Rohrer, Ann Rev Mater Res 35, 99 (2005).

    Article  ADS  CAS  Google Scholar 

  32. G. Gottstein, and L.S. Shvindlerman, Acta Mater. 50, 703 (2002).

    Article  ADS  CAS  Google Scholar 

  33. J.W. Cahn, Acta Metall. 10, 789 (1962).

    Article  CAS  Google Scholar 

  34. Y. Epshteyn, C. Liu, and M. Mizuno, SIAM J. Math. Anal. 53, 3072 (2021).

    Article  MathSciNet  Google Scholar 

  35. D. Mattissen, D.A. Molodov, L.S. Shvindlerman, and G. Gottstein, Acta Mater. 53, 2049 (2005).

    Article  ADS  CAS  Google Scholar 

  36. Y. Epshteyn, C. Liu, and M. Mizuno, Commun. Math. Sci. 19, 1403 (2021).

    Article  MathSciNet  Google Scholar 

  37. W.W. Mullins, J. Appl. Phys. 28, 333 (1957).

    Article  ADS  CAS  Google Scholar 

  38. C. Herring, and W. Kingston, The Physics of Powder Metallurgy (McGraw Hill, New York, 1951).

    Google Scholar 

  39. M. Frary, and C.A. Schuh, Acta Mater. 51, 3731 (2003).

    Article  ADS  CAS  Google Scholar 

  40. C.A. Schuh, M. Kumar, and W.E. King, J. Mater. Sci. 40, 847 (2005).

    Article  ADS  CAS  Google Scholar 

  41. B. W. Reed and C. A. Schuh, in Electron Backscatter Diffraction in Materials Science, edited by A. J. Schwartz, M. Kumar, B. L. Adams, and D. P. Field, 2nd ed. (Springer US, New York, 2009), pp. 201–214.

  42. D.T. Carpenter, J.M. Rickman, and K. Barmak, J. Appl. Phys. 84, 5843 (1998).

    Article  ADS  CAS  Google Scholar 

  43. D. M. Saylor, B. S. El-Dasher, B. L. Adams, and G. S. Rohrer, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 35A, 1981 (2004).

  44. G. S. Rohrer, D. M. Saylor, B. El Dasher, B. L. Adams, A. D. Rollett, and P. Wynblatt, Zeitschrift Fuer Metallkunde/Mater. Res. Adv. Tech. (2004).

  45. Y.-F. Shen, S. Maddali, D. Menasche, A. Bhattacharya, G.S. Rohrer, and R.M. Suter, Phys Rev Mater 3, 63611 (2019).

    Article  CAS  Google Scholar 

  46. Z. Xu, C.M. Hefferan, S.F. Li, J. Lind, R.M. Suter, F. Abdeljawad, and G.S. Rohrer, Scr. Mater. 230, 115405 (2023).

    Article  CAS  Google Scholar 

  47. G.S. Rohrer, X. Liu, J. Liu, A. Darbal, M.N. Kelly, X. Chen, M.A. Berkson, N.T. Nuhfer, K.R. Coffey, and K. Barmak, J. Mater. Sci. 52, 9819 (2017).

    Article  ADS  CAS  Google Scholar 

  48. K. N. Zhu, Q. Ruan, and A. Godfrey, IOP Conf. Ser.: Mater. Sci. Eng. (2015).

  49. A. Bhattacharya, Y. F. Shen, C. M. Hefferan, S. F. Li, J. Lind, R. M. Suter, C. E. Krill, and G. S. Rohrer, Science (1979) 374, 189 (2021).

  50. S. Ratanaphan, D. Raabe, R. Sarochawikasit, D.L. Olmsted, G.S. Rohrer, and K.N. Tu, J. Mater. Sci. 52, 4070 (2016).

    Article  ADS  Google Scholar 

  51. V. Randle, G. S. Rohrer, H. M. Miller, M. Coleman, and G. T. Owen, Acta Mater. 56, (2008).

  52. X. Liu, D. Choi, H. Beladi, N.T. Nuhfer, G.S. Rohrer, and K. Barmak, Scr. Mater. 69, 413 (2013).

    Article  CAS  Google Scholar 

  53. A. Darbal, K. Ganesh, K. Barmak, G. Rohrer, P. Ferreira, T. Sun, and K. Coffey, Microsc. Microanal. 17 (2011).

  54. J. Kang, K. Walter, H. Bale, and A.J. Shahani, Acta Mater. 240, 118316 (2022).

    Article  CAS  Google Scholar 

  55. E. F. Rauch, P. Harrison, X. Zhou, M. Herbig, W. Ludwig, and M. Véron, Symmetry, 13, 1675 (2021).

  56. E.F. Rauch, J. Portillo, S. Nicolopoulos, D. Bultreys, S. Rouvimov, and P. Moeck, Zeitschrift Fur Kristallographie 225, 103 (2010).

    Article  ADS  CAS  Google Scholar 

  57. E.F. Rauch, and L. Dupuy, Arch. Metall. Mater. 50, 87 (2005).

    CAS  Google Scholar 

  58. K. Barmak, in Metallic Films for Electronic, Optical, and Magnetic Applications, edited by K. Barmak and K. Coffey (Woodhead Publsihing, Philadelphia, 2014), pp. 121–233.

  59. E.F. Rauch, and M. Véron, Microsc. Microanal. 22, 500 (2016).

    Article  ADS  Google Scholar 

  60. Q. He, S. Schmidt, W. Zhu, G. Wu, T. Huang, L. Zhang, D.J. Jensen, Z. Feng, A. Godfrey, and X. Huang, Science 382, 1065 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. H. H. Liu, S. Schmidt, H. F. Poulsen, A. Godfrey, Z. Q. Liu, J. A. Sharon, and X. Huang, Science (1979) 332, 833 (2011).

  62. G. Wu, W. Zhu, Q. He, Z. Feng, T. Huang, L. Zhang, S. Schmidt, A. Godfrey, and X. Huang, Nano Mater. Sci. 2, 50 (2020).

    Article  Google Scholar 

  63. W. Zhu, G. Wu, A. Godfrey, S. Schmidt, Q. He, Z. Feng, T. Huang, L. Zhang, and X. Huang, Scr. Mater. 214 (2022).

  64. M.L. Taheri, E.A. Stach, I. Arslan, P.A. Crozier, B.C. Kabius, T. LaGrange, A.M. Minor, S. Takeda, M. Tanase, J.B. Wagner, and R. Sharma, Ultramicroscopy 170, 86 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. E.A. Holm, R. Cohn, N. Gao, A.R. Kitahara, T.P. Matson, B. Lei, and S.R. Yarasi, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 51, 5985 (2020).

    Article  ADS  CAS  Google Scholar 

  66. M.J. Patrick, J.K. Eckstein, J.R. Lopez, S. Toderas, S.A. Asher, S.I. Whang, S. Levine, J.M. Rickman, and K. Barmak, Microsc. Microanal. 29, 1968–1979 (2023).

    Article  ADS  PubMed  Google Scholar 

  67. S.J. Dillon, and G.S. Rohrer, J. Am. Ceram. Soc. 92, 1580 (2009).

    Article  CAS  Google Scholar 

  68. M.D. Uchic, M.A. Groeber, D.M. Dimiduk, and J.P. Simmons, Scr. Mater. 55, 23 (2006).

    Article  CAS  Google Scholar 

  69. S. J. Dillon and G. S. Rohrer, Microsc. Microanal. 15(Suppl 2), (2009).

  70. P.G. Kotula, G.S. Rohrer, and M.P. Marsh, MRS Bull. 39, 361 (2014).

    Article  CAS  Google Scholar 

  71. G. Johnson, A. King, M.G. Honnicke, J. Marrow, and W. Ludwig, J. Appl. Crystallogr. 41, 310 (2008).

    Article  ADS  CAS  Google Scholar 

  72. V. Muralikrishnan, H. Liu, L. Yang, B. Conry, C.J. Marvel, M.P. Harmer, G.S. Rohrer, M.R. Tonks, R.M. Suter, C.E. Krill, and A.R. Krause, Scr. Mater. 222, 115055 (2023).

    Article  CAS  Google Scholar 

  73. J.V. Bernier, R.M. Suter, A.D. Rollett, and J.D. Almer, Annu. Rev. Mater. Res. 50, 395 (2020).

    Article  ADS  CAS  Google Scholar 

  74. A. Bhattacharya, Y.F. Shen, C.M. Hefferan, S.F. Li, J. Lind, R.M. Suter, and G.S. Rohrer, Acta Mater. 167, 40 (2019).

    Article  ADS  CAS  Google Scholar 

  75. D.T. Carpenter, J.R. Codner, K. Barmak, and J.M. Rickman, Mater. Lett. 41, 296 (1999).

    Article  CAS  Google Scholar 

  76. D.B. Williams, and C.B. Carter, Transmission electron microscopy: a textbook for materials science (Springer, USA, 2009).

    Book  Google Scholar 

  77. J. S. Chambers, Masters Thesis, Duquesne University (2006).

  78. M. J. Patrick, J. K. Eckstein, J. Lopez, A. J. Ma, S. Toderas, S. Levine, and K. Barmak, Microsc. Microanal. 29 supplement_1, 1581 (2023).

  79. X. Xu, Z. Yu, W. Y. Chen, A. Chen, A. Motta, and X. Wang, J. Nucl. Mater. 588 (2024).

  80. K. Barmak, J. Kim, C. S. Kim, W. E. Archibald, G. S. Rohrer, A. D. Rollett, D. Kinderlehrer, S. Ta’Asan, H. Zhang, and D. J. Srolovitz, Scr. Mater. 54, 1059 (2006).

  81. H.J. Frost, and C.V. Thompson, Curr. Opin. Solid State Mater. Sci. 1, 361 (1996).

    Article  ADS  CAS  Google Scholar 

  82. R. Backofen, K. Barmak, K.E. Elder, and A. Voigt, Acta Mater. 64, 72 (2013).

    Article  ADS  Google Scholar 

  83. H.J. Frost, C.V. Thompson, and D.T. Walton, Acta Metall. Mater. 38, 1455 (1990).

    Article  Google Scholar 

  84. N. Siddique, S. Paheding, C.P. Elkin, and V. Devabhaktuni, IEEE Access 9, 82031 (2021).

    Article  Google Scholar 

  85. N. S. Punn and S. Agarwal, ACM Trans. Multimedia Comput. Commun. Appl. 16 (2020).

  86. O. Ronneberger, P. Fischer, and T. Brox, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9351, 234 (2015).

  87. C.H. Lee, A. Khan, D. Luo, T.P. Santos, C. Shi, B.E. Janicek, S. Kang, W. Zhu, N.A. Sobh, A. Schleife, B.K. Clark, and P.Y. Huang, Nano Lett. 20, 3369 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. S. H. Yang, W. Choi, B. W. Cho, F. O. T. Agyapong-Fordjour, S. Park, S. J. Yun, H. J. Kim, Y. K. Han, Y. H. Lee, K. K. Kim, and Y. M. Kim, Adv. Sci. 8 (2021).

  89. J. Madsen, P. Liu, J. Kling, J.B. Wagner, T.W. Hansen, O. Winther, and J. Schiøtz, Adv. Theory Simul. 1, 1800037 (2018).

    Article  Google Scholar 

  90. L. von Chamier, R. F. Laine, J. Jukkala, C. Spahn, D. Krentzel, E. Nehme, M. Lerche, S. Hernández-Pérez, P. K. Mattila, E. Karinou, S. Holden, A. C. Solak, A. Krull, T. O. Buchholz, M. L. Jones, L. A. Royer, C. Leterrier, Y. Shechtman, F. Jug, M. Heilemann, G. Jacquemet, and R. Henriques, Nat. Commun. 12, 1 (2021).

  91. X. Xu, Z. Yu, A. Motta, and X. Wang, Microsc. Microanal. 28, 2036 (2022).

    Article  ADS  Google Scholar 

  92. X. Gu, X. Yang, W. Wang, Y. Jin, and D. Meng, in Proceedings—2012 IEEE 7th International Conference on Networking, Architecture and Storage, NAS 2012 (2012), pp. 94–98.

  93. J. Na, J. Lee, S.-H. Kang, S.-J. Kim, and S. Lee, Mater Charact 206, 1044 (2023).

    Article  Google Scholar 

  94. M. Wittwer, B. Gaskey, and M. Seita, Mater Charact 174, 110978 (2021).

    Article  CAS  Google Scholar 

  95. F. J. Humphreys, G. S. Rohrer, and A. Rollett, Recrystallization and Related Annealing Phenomena (Third Edition) (2017).

  96. B. Conry, M. Kole, W. R. Burnett, J. B. Harley, M. R. Tonks, M. S. Kesler, and A. R. Krause, J. Am. Ceram. Soc. 1 (2023).

  97. S.J. Dillon, and G.S. Rohrer, Acta Mater. 57, 1 (2009).

    Article  ADS  CAS  Google Scholar 

  98. C. Goux, Can. Metall. Q. 13, 9 (1974).

    Article  CAS  Google Scholar 

  99. E. R. Homer, S. Patala, and J. L. Priedeman, Sci. Rep. 5, 1 (2015).

  100. V. Randle, Mater. Sci. Technol. 26, 774 (2010).

    Article  ADS  CAS  Google Scholar 

  101. Y. Pang, and P. Wynblatt, J. Am. Ceram. Soc. 88, 2286 (2005).

    Article  CAS  Google Scholar 

  102. S. Kobayashi, T. Yoshimura, S. Tsurekawa, T. Watanabe, and J. Cui, Mater. Trans. 44, 1469 (2003).

    Article  Google Scholar 

  103. N. Shibata, F. Oba, T. Yamamoto, and Y. Ikuhara, Philos. Mag. 84, 2381 (2004).

    Article  ADS  CAS  Google Scholar 

  104. P. Lin, G. Palumbo, U. Erb, and K.T. Aust, Scripta Met Mater 33, 1387 (1995).

    Article  CAS  Google Scholar 

  105. L.C. Lim, and T. Watanabe, Scripta Met 23, 489 (1989).

    Article  Google Scholar 

  106. S. Kobayashi, A. Kamata, and T. Watanabe, Scripta Mater. 61, 1032 (2009).

    Article  CAS  Google Scholar 

  107. T. Watanabe, J. Mater. Sci. 46, 4095 (2011).

    Article  ADS  CAS  Google Scholar 

  108. M. Wagih, and C.A. Schuh, Scr. Mater. 237, 115716 (2023).

    Article  CAS  Google Scholar 

  109. J. Zhang, W. Ludwig, Y. Zhang, H.H.B. Sørensen, D.J. Rowenhorst, A. Yamanaka, P.W. Voorhees, and H.F. Poulsen, Acta Mater. 191, 211 (2020).

    Article  ADS  CAS  Google Scholar 

  110. S. Ratanaphan, Y. Yoon, and G. S. Rohrer, J. Mater. Sci. 49 (2014).

  111. W. Zhu, G. Wu, A. Godfrey, S. Schmidt, Q. He, Z. Feng, T. Huang, L. Zhang, and X. Huang, Scr. Mater. 214, 114677 (2022).

    Article  CAS  Google Scholar 

  112. H. Beladi, N.T. Nuhfer, and G.S. Rohrer, Acta Mater. 70, 281 (2014).

    Article  ADS  CAS  Google Scholar 

  113. D.M. Saylor, A. Morawiec, and G.S. Rohrer, Acta Mater. 51, 3663 (2003).

    Article  ADS  CAS  Google Scholar 

  114. O. Chirayutthanasak, R. Sarochawikasit, S. Khongpia, T. Okita, S. Dangtip, G.S. Rohrer, and S. Ratanaphan, Scr. Mater. 240, 115821 (2024).

    Article  CAS  Google Scholar 

  115. A.D. Darbal, K.J. Ganesh, X. Liu, S.B. Lee, J. Ledonne, T. Sun, B. Yao, A.P. Warren, G.S. Rohrer, A.D. Rollett, P.J. Ferreira, K.R. Coffey, and K. Barmak, Microsc. Microanal. 19, 111 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  116. A. King, M. Herbig, W. Ludwig, P. Reischig, E.M. Lauridsen, T. Marrow, and J.Y. Buffière, Nucl Instrum Methods Phys Res B 268, 291 (2010).

    Article  ADS  CAS  Google Scholar 

  117. D.J. Jensen, and H.F. Poulsen, Mater Charact 72, 1 (2012).

    Article  CAS  Google Scholar 

  118. “Transmission Kikuchi Diffraction” (Oxford Instruments, n.d.). https://www.ebsd.com/ebsd-techniques/transmission-kikuchi-diffraction. Accessed 29 Nov 2023.

  119. X. Liu, N. T. Nuhfer, A. P. Warren, K. R. Coffey, G. S. Rohrer, and K. Barmak (2015).

  120. X. Liu, A.P. Warren, N.T. Nuhfer, A.D. Rollett, K.R. Coffey, and K. Barmak, Acta Mater. 79, 138 (2014).

    Article  ADS  CAS  Google Scholar 

  121. J. Gruber, H.M. Miller, T.D. Hoffmann, G.S. Rohrer, and A.D. Rollett, Acta Mater. 57, 6102 (2009).

    Article  ADS  CAS  Google Scholar 

  122. J. Gruber, A.D. Rollett, and G.S. Rohrer, Acta Mater. 58, 14 (2010).

    Article  ADS  CAS  Google Scholar 

  123. J. Gruber, D.C. George, A.P. Kuprat, G.S. Rohrer, and A.D. Rollett, Scr. Mater. 53, 351 (2005).

    Article  CAS  Google Scholar 

  124. M.J. Patrick, G.S. Rohrer, O. Chirayutthanasak, S. Ratanaphan, E.R. Homer, G.L.W. Hart, Y. Epshteyn, and K. Barmak, Acta Mater. 242, 118476 (2023).

    Article  CAS  Google Scholar 

  125. O. Chirayutthanasak, R. Sarochawikasit, A. Wisitsorasak, N. Rujisamphan, T. Frolov, T. Oppelstrup, S. Dangtip, G. S. Rohrer, and S. Ratanaphan, Scr. Mater. 209 (2022).

  126. S. Ratanaphan, T. Boonkird, R. Sarochawikasit, H. Beladi, K. Barmak, and G.S. Rohrer, Mater. Lett. 186, 116 (2017).

    Article  CAS  Google Scholar 

  127. V.V. Bulatov, B.W. Reed, and M. Kumar, Acta Mater. 65, 161 (2014).

    Article  ADS  CAS  Google Scholar 

  128. E. R. Homer, G. L. W. Hart, C. Braxton Owens, D. M. Hensley, J. C. Spendlove, and L. H. Serafin, Acta Mater. 234 (2022).

  129. M. Ohring, Materials Science of Thin Films (Elsevier, 2002).

  130. L.I. Maissel, R. Glang, and P.P. Budenstein, J. Electrochem. Soc. 118, 114C (1971).

    Article  ADS  Google Scholar 

  131. J.K. Mackenzie, and J.F. Nicholas, J. Phys. Chem. Solids 23, 197 (1962).

    Article  ADS  Google Scholar 

  132. J.K. Mackenzie, A.J.W. Moore, and J.F. Nicholas, J. Phys. Chem. Solids 23, 185 (1962).

    Article  ADS  CAS  Google Scholar 

  133. R. Carel, C.V. Thompson, and H.J. Frost, Acta Mater. 44, 2479 (1996).

    Article  ADS  CAS  Google Scholar 

  134. C.C. Wong, H.I. Smith, and C.V. Thompson, Appl. Phys. Lett. 48, 335 (1986).

    Article  ADS  CAS  Google Scholar 

  135. C.V. Thompson, Scr. Metall. Mater. 28, 167 (1993).

    Article  CAS  Google Scholar 

  136. D.W. Hoffman, and J.W. Cahn, Surf. Sci. 31, 368 (1972).

    Article  ADS  CAS  Google Scholar 

  137. J. l. Cahn and D. L. Hoffman, Acta Metall. 22, 1205 (1974).

  138. D.M. Saylor, and G.S. Rohrer, Interface Sci. 9, 35 (2001).

    Article  CAS  Google Scholar 

  139. D.J. Rowenhorst, and P.W. Voorhees, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36, 2127 (2005).

    Article  ADS  Google Scholar 

  140. A. Moraweic, Acta Mater. 48 (2000).

  141. Y.-F. Shen, X. Zhong, H. Liu, R.M. Suter, A. Morawiec, and G.S. Rohrer, Acta Mater. 166, 126 (2019).

    Article  ADS  CAS  Google Scholar 

  142. H. Beladi and G. S. Rohrer, Acta Mater. 61 (2013).

  143. D.M. Saylor, A. Morawiec, and G.S. Rohrer, Acta Mater. 51, 3675 (2003).

    Article  ADS  CAS  Google Scholar 

  144. E.A. Holm, G.S. Rohrer, S.M. Foiles, A.D. Rollett, H.M. Miller, and D.L. Olmsted, Acta Mater. 59, 5250 (2011).

    Article  ADS  CAS  Google Scholar 

  145. S.J. Dillon, Y.F. Shen, and G.S. Rohrer, J. Am. Ceram. Soc. 105, 2925 (2022).

    Article  CAS  Google Scholar 

  146. G.S. Rohrer, E.A. Holm, A.D. Rollett, S.M. Foiles, J. Li, and D.L. Olmsted, Acta Mater. 58, 5063 (2010).

    Article  ADS  CAS  Google Scholar 

  147. D.M. Saylor, A. Morawiec, and G.S. Rohrer, J. Am. Ceram. Soc. 85, 3081 (2002).

    Article  CAS  Google Scholar 

  148. C. Ophus, Microsc. Microanal. 25, 563 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  149. C.S. Nichols, C.M. Mansuri, S.J. Townsend, and D.A. Smith, Acta Metall. Mater. 41, 1861 (1993).

    Article  CAS  Google Scholar 

  150. F.M. Ross, and A.M. Minor, In Situ Transmission Electron Microscopy (Springer, New York, 2019), pp101–187.

    Google Scholar 

  151. Z. Ma, L. Niu, W. Jiang, S. Malunavar, X. Wang, and B. D. A. Levin, J. Phys.: Mater. 4, 042005 (2021).

  152. S. Simoes, R. Calinas, M.T. Vieira, M.F. Vieira, and P.J. Ferreira, Nanotechnology 21, 145701 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  153. C. Ding, W. Chen, S. Sabbaghianrad, J. Xu, D. Shan, B. Guo, and T.G. Langdon, Mater Charact 173, 110929 (2021).

    Article  CAS  Google Scholar 

  154. S. Kumar, T. Alam, and A. Haque, MRS Commun 3, 101 (2013).

    Article  Google Scholar 

  155. S. Stangebye, Y. Zhang, S. Gupta, E. Hosseinian, F. Yu, C. Barr, K. Hattar, O. Pierron, T. Zhu, and J. Kacher, Materialia (Oxford) 16 (2021).

  156. C.V. Thompson, and R. Carel, J. Mech. Phys. Solids 44, 657 (1996).

    Article  ADS  CAS  Google Scholar 

  157. J. Wei, B. Feng, R. Ishikawa, T. Yokoi, K. Matsunaga, N. Shibata, and Y. Ikuhara, Nat. Mater. 20, 951 (2021).

  158. C.M. Barr, E.Y. Chen, J.E. Nathaniel, P. Lu, D.P. Adams, R. Dingreville, B.L. Boyce, K. Hattar, and D.L. Medlin, Sci. Adv. 8, 900 (2022).

    Article  Google Scholar 

  159. K.L. Merkle, L.J. Thompson, and F. Phillipp, Interface Sci. 12, 277 (2004).

    Article  CAS  Google Scholar 

  160. Q. Zhu, G. Cao, J. Wang, C. Deng, J. Li, Z. Zhang, and S. X. Mao, Nat. Commun. 10, 1 (2019).

  161. Q.Z. Hong, K. Barmak, and L.A. Clevenger, J. Appl. Phys. 72, 3423 (1992).

    Article  ADS  CAS  Google Scholar 

  162. Q.Z. Hong, K. Barmak, S.Q. Hong, and L.A. Clevenger, J. Appl. Phys. 74, 4958 (1993).

    Article  ADS  CAS  Google Scholar 

  163. D. Dzhigaev, Y. Smirnov, P. A. Repecaud, L. A. B. Marçal, G. Fevola, D. Sheyfer, Q. Jeangros, W. Cha, R. Harder, A. Mikkelsen, J. Wallentin, M. Morales-Masis, and M. E. Stuckelberger, Commun. Mater. 3, 1 (2022).

  164. Z. Yu, X. Xu, W.Y. Chen, Y. Sharma, X. Wang, A. Chen, C.J. Ulmer, and A.T. Motta, Acta Mater. 231, 117856 (2022).

    Article  CAS  Google Scholar 

  165. Y. Bi, Y. Tian, M. Xu, E. Boltynjuk, L.V. Estrada, H. Hahn, J. Han, D.J. Srolovitz, and X. Pan, Microsc. Microanal. 29, 1509 (2023).

    Article  ADS  PubMed  Google Scholar 

  166. M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni, Acta Metall. 32, 783 (1984).

    Article  CAS  Google Scholar 

  167. C.J. Marvel, C. Riedel, W.E. Frazier, A.D. Rollett, J.M. Rickman, and M.P. Harmer, Acta Mater. 239, 118262 (2022).

    Article  CAS  Google Scholar 

  168. L.Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2003).

    Article  Google Scholar 

  169. P. J. Diggle, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition 1 (2013).

  170. J. M. Rickman, K. Barmak, Y. Epshteyn, and C. Liu, Npj Comput. Mater. 9, 1 (2023).

  171. P. Vedanti, X. Wu, and V. Berdichevsky, Sci. Rep. 10, 1 (2020).

  172. J. M. Rickman, K. Barmak, B. Y. Chen, and M. Patrick, Sci. Rep. 13, 1 (2023).

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the United States National Science Foundation under grant DMS-1905492 and under the DMREF program grants DMS-2118206 and DMS-2118197. This work was carried out in part in the Electron Microscopy Laboratory of Columbia Nano Initiative (CNI) Shared Lab Facilities at Columbia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katayun Barmak.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barmak, K., Rickman, J.M. & Patrick, M.J. Advances in Experimental Studies of Grain Growth in Thin Films. JOM (2024). https://doi.org/10.1007/s11837-024-06475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06475-9

Navigation