Skip to main content
Log in

Universal features of grain boundary networks in FCC materials

  • Grain Boundary and Interface Engineering
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Grain boundary character distributions and triple junction distributions have been determined for 70 experimental microstructures, comprising aluminum-, copper-, austenitic iron- and nickel-based alloys in a wide variety of processed states. In these FCC metals, the fraction of coincidence site lattice (CSL) boundaries ranges from about 12% (as for a random Mackenzie distribution) to values as high as 75%. Despite wide variations in composition, processing, and grain size, we find that the grain boundary character distribution and triple junction distributions of these materials have striking similarities, and can be described by just a few parameters. This universality arises due to the highly non-random laws that govern the assembly of the grain boundary network, and due to the kinematic limitation that CSL boundaries arise primarily through twinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Schwartz, M. Kumar and B. L. Adams (Eds.), “Electron Backscatter Diffraction in Materials Science” (Kluwer Academic, New York, 2000).

    Google Scholar 

  2. M. C. Demirel, A. P. Kuprat, D. C. George, G. K. Straub and A. D. Rollett, Inter. Sci. 10 (2002) 137.

    Google Scholar 

  3. A. Kazaryan, Y. Wang, S. A. Dregia and B. R. Patton, Acta Mater. 50 (2002) 2491.

    Article  Google Scholar 

  4. L. J. Gibson and M. F. Ashby “Cellular Solids: Structure & Properties,” Second edition (Pergamon Press, Oxford, 1997).

    Google Scholar 

  5. K. Miyazawa, Y. Iwasaki, K. Ito and Y. Ishida, Acta Cryst. A52 (1996) 787.

    Google Scholar 

  6. V. Y. Gertsman, Acta Cryst. A57 (2001) 649.

    Google Scholar 

  7. V. Y. Gertsman, Acta Cryst. A57 (2001) 369.

    Google Scholar 

  8. A. P. Sutton and R. W. Balluffi “Interfaces in Crystalline Materials” (Oxford Science Publication, 1995).

  9. M. Frary and C. A. Schuh, Acta Mater. 51 (2003) 3731.

    Article  Google Scholar 

  10. M. Kumar, W. E. King and A. J. Schwartz, Acta Mater. 48 (2000) 2081.

    Google Scholar 

  11. C. A. Schuh, M. Kumar and W. E. King, Acta Mater. 51 (2003) 687.

    Article  Google Scholar 

  12. C. A. Schuh, M. Kumar and W. E. King, Zeitschrift für Metallkunde 94 (2003) 323.

    Google Scholar 

  13. D. G. Brandon, Acta Metall. 14 (1966) 1479.

    Article  Google Scholar 

  14. M. Deschamps, F. Baribier and A. Marrouche, Acta Metall. 35 (1987) 101.

    Article  Google Scholar 

  15. G. Palumbo and K. T. Aust in “Materials Interfaces,” edited by D. Wolf and S. Yip (Chapman and Hall, London, 1992) p. 190.

    Google Scholar 

  16. G. Palumbo, E. M. Lehockey and P. Lin, JOM 50 (1998) 40.

    Google Scholar 

  17. T. Watanabe, Res Mechanica 11 (1984) 47.

    Google Scholar 

  18. T. Watanabe, Mater. Sci. Eng. A176 (1994) 39.

    Google Scholar 

  19. E. M. Lehockey, G. Palumbo and P. Lin, Metall. Mater. Transac. 29A (1998) 3069.

    Google Scholar 

  20. D. Horton, C. B. Thomson and V. Randle, Mater. Sci. Eng. A203 (1995) 408.

    Google Scholar 

  21. M. Kumar, A. J. Schwartz and W. E. King, Acta Mater. 50 (2002) 2599.

    Article  Google Scholar 

  22. R. L. Fullman and J. C. Fisher, J. Appl. Phys. 22 (1951) 1350.

    Article  Google Scholar 

  23. V. Randle, Acta Mater. 47 (1999) 4187.

    Article  Google Scholar 

  24. V. Y. Gertsman and K. Tangri, Acta Metallurgica et Materialia 43 (1995) 2317.

    Google Scholar 

  25. G. Palumbo, K. T. Aust, U. Erb, P. J. King, A. M. Brennenstuhl and P. C. Lichtenberger, Physica Status Solidi 131 (1992) 425.

    Google Scholar 

  26. V. Y. Gertsman and K. Tangri, J. Mater. Sci. Lett. 10 (1991) 768.

    Article  Google Scholar 

  27. V. Y. Gertsman, K. Tangri and R. Z. Valiev, Acta Metallurgica et Materialia 42 (1994) 1785.

    Article  Google Scholar 

  28. P. Davies, V. Randle, G. Watkins and H. Davies, J. Mater. Sci. 37 (2002) 4203.

    Article  Google Scholar 

  29. Y. Pan and B. L. Adams, Scripta Metallurgica et Materialia 30 (1994) 1055.

    Article  Google Scholar 

  30. A. Morawiec, J. A. Szpunar and D. C. Hinz, Acta Metallurgica et Materialia 41 (1993) 2825.

    Article  Google Scholar 

  31. M. Frary and C. A. Schuh, Appl. Phys. Lett. 83 (2003) 3755.

    Google Scholar 

  32. R. W. Minich, C. A. Schuh and M. Kumar, Phys. Rev. B 66 (2002) 052101.

    Article  Google Scholar 

  33. C. A. Schuh, R. W. Minich and M. Kumar, Philosoph. Mag. A83 (2003) 711.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuh, C.A., Kumar, M. & King, W.E. Universal features of grain boundary networks in FCC materials. J Mater Sci 40, 847–852 (2005). https://doi.org/10.1007/s10853-005-6500-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6500-9

Keywords

Navigation