Skip to main content
Log in

Effect of Iron Content on High Strength and Environmentally Friendly Water-Permeable Bricks Prepared from W-Mo Tailing and Iron Slags

  • Recent Developments on Metals and Energy Extraction from Waste Streams
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The accumulator action of a large number of W-Mo tailings and iron slags causes a waste of resources and damage to the environment. Using solid waste as raw material to produce building materials can achieve resource utilization. Water-permeable bricks can alleviate the problem of rainwater accumulation on city pavement. The composition of single solid waste makes it difficult to meet the need for water-permeable bricks, causing low compressive strength. The iron content increase can promote the formation of the Fe-rich phase, which adds grain boundary area in permeable brick, improving its anti-deformation and anti-fracture performance, thus improving the compressive strength. In this paper, we used the sintering method to prepare a high-compressive-strength water-permeable brick and used W-Mo tailings and iron slags as raw materials. We discussed the effects of sintering temperature and iron content on compressive strength, porosity, and permeability. We adjusted the ratio of raw materials and controlled the iron content of the green body to improve the compressive strength. The results show that under the condition of a sintering temperature of 1050°C and iron content of 25%, the permeability coefficient of the water-permeable brick is 1.89 × 10−2 cm/s, and the compressive strength is 86.73 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Qi and A. Fourie, Miner. Eng. 144, 106025 (2019).

    Article  CAS  Google Scholar 

  2. M. Edraki, T. Baumgartl, E. Manlapig, D. Bradshaw, D.M. Franks, and C.J. Moran, J. Clean. Prod. 84, 411 (2014).

    Article  Google Scholar 

  3. S.K. Behera, Constr. Build. Mater. 309, 125120 (2021).

    Article  CAS  Google Scholar 

  4. D. Ma, Z. Wang, M. Guo, M. Zhang, and J. Liu, Waste Manage. 34, 2365 (2014).

    Article  CAS  Google Scholar 

  5. S. Roy, Waste Manag. Res. 25, 475–482 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Adiansyah, Environ Manage, 199, 181-91 (2017)

  7. A.B. Ghazi, A. Jamshidi-Zanjani, and H. Nejati, Constr. Build. Mater. 317, 125921 (2022).

    Article  Google Scholar 

  8. Y. Wang, Hazard Mater 378, 120768 (2019).

    Article  CAS  Google Scholar 

  9. E.S. Darbani, M. Rafieian, D.M. Parapari, and J.M. Guldmann, Sustain. Cities Soc. 89, 104339 (2023).

    Article  Google Scholar 

  10. B.J. He, Sustain. Cities Soc. 50, 101647 (2022).

    Article  Google Scholar 

  11. J. Liu, X. Shi, Q. Zou, T. Zhao, J. Zheng, T. Liu, L. Han, Y. Ke, and Q. Wang, Constr. Build. Mater. 357, 129310 (2022).

    Article  CAS  Google Scholar 

  12. Z. Yang, Z. Qiang, M. Guo, G. Yi, Y. Shi, F. Cheng, and M. Zhang, Clean. Prod. 254, 120167 (2020).

    Article  CAS  Google Scholar 

  13. Wu. Xiuwen, H. Ma, Wu. Nan, C. Shi, Y. Zhi, and Y. Wang, Environ. Prog. Sustain. Energy 35, 779 (2016).

    Article  Google Scholar 

  14. J. Li, X. Li, and S. Liang, Constr. Build. Mater. 271, 121556 (2021).

    Article  CAS  Google Scholar 

  15. J. Liu, C. Li, and C. Lin, Int. J. Appl. Ceram. Technol. 17, 94 (2020).

    Article  CAS  Google Scholar 

  16. C. Zhou, Constr. Build. Mater. 188, 850 (2018).

    Article  Google Scholar 

  17. R. Cai, Mandula, and J. Chai, IOP Conf. Series Earth Environ. Sci. 113, 012136 (2018).

    Article  Google Scholar 

  18. M. Shafiquzzaman, Sustainability 14, 11115 (2022).

    Article  CAS  Google Scholar 

  19. M. Nishigaki, Waste Manage. 20, 185 (2000).

    Article  CAS  Google Scholar 

  20. W. Liu, T. Wu, Z. Li, X. Hao, and A. Lu, Constr. Build. Mater. 77, 139 (2015).

    Article  Google Scholar 

  21. H. Liu, Environ. Manage. 270, 110927 (2020).

    CAS  Google Scholar 

  22. X. Quan, S. Wang, K. Liu, Xu. Jin, N. Zhao, and Bo. Liu, Constr. Build. Mater. 343, 127982 (2022).

    Article  CAS  Google Scholar 

  23. J. Hao, Z.-h Dou, T.-a Zhang, B.-C. Jiang, K. Wang, and X.-Y. Wan, J. Clean. Prod. 375, 134202 (2022).

    Article  CAS  Google Scholar 

  24. X. Wang, X. Li, X. Yan, Tu. Cheng, and Yu. Zhaoguo, Pedosphere 31, 28 (2021).

    Article  CAS  Google Scholar 

  25. K. Peng, H. Yang, and J. Ouyang, Powder Technol. 286, 678 (2015).

    Article  CAS  Google Scholar 

  26. S. Li, K. Shou, L. Wang, and Z. Liu, Case Studies Constr. Mater. 17, e01291 (2022).

    Google Scholar 

  27. Yu. Tao Luo, F.L. Yi, Q. Sun, X. Pan, and C. Hua, Case Studies Const. Mater. 16, e01101 (2022).

    Google Scholar 

  28. V. Gomes, Mater. Sci. 37, 2581 (2002).

    Article  ADS  CAS  Google Scholar 

  29. S. Dimitrova, V. Nikolov, and D. Mehandjiev, Mater. Sci. 36, 2639 (2001).

    Article  ADS  CAS  Google Scholar 

  30. Yu. Zhu, B. Guo, W. Zuo, K. Jiang, H. Chen, and Ku. Jiangang, Mater. Chem. Phys. 287, 126315 (2022).

    Article  CAS  Google Scholar 

  31. K. Peng, C. Lv, and H. Yang, Ceram. Int. 40, 10291 (2014).

    Article  CAS  Google Scholar 

  32. S. Gao, Qu. Jiayi, S. Zhang, L. Guo, and Z. Huang, J. Constr. Steel Res. 189, 107100 (2022).

    Article  Google Scholar 

  33. R.S. Edwin, E. Gruyaert, and N. De Belie, J. Build. Eng. 54, 104567 (2022).

    Article  Google Scholar 

  34. J. Thomas, N.N. Thaickavil, and M.P. Abraham, Adv. Concr. Constr. 6(5), 545 (2018).

    Google Scholar 

  35. A. Rajasekar, K. Arunachalam, and M. Kottaisamy, J. Clean. Prod. 208, 402–414 (2019).

    Article  CAS  Google Scholar 

  36. R.S. Edwin, M. De Schepper, E. Gruyaert, and N. De Belie, Constr. Build. Mater. 119, 31–44 (2016).

    Article  CAS  Google Scholar 

  37. H. Wang, Y. Liu, and Z. Mei, J. Wuhan Univ. Technol. Mater 37, 645–655 (2022).

    Article  CAS  Google Scholar 

  38. H. Han, Ju. Chenggong, W. Yan, M. Yang, Q. Wan, Q. Li, and Wu. Yan, J. Build. Eng. 43, 103191 (2021).

    Article  Google Scholar 

  39. Z. Wei, Mater. Sci. Forum 980, 254 (2020).

    Article  Google Scholar 

  40. Z. Wei, J. Zhao, W. Wang, Y. Yang, S. Zhuang, Lu. Ting, and Z. Hou, Constr. Build. Mater. 282, 122655 (2021).

    Article  CAS  Google Scholar 

  41. P. Chindaprasirt, A. Srisuwan, C. Saengthong, S. Lawanwadeekul, and N. Phonphuak, Build. Eng. 44, 102942 (2021).

    Article  Google Scholar 

  42. O. Gencel, M.J. Munir, S.M.S. Kazmi, M. Sutcu, E. Erdogmus, P.M. Velasco, and D.E. Quesada, Ceram. Int. 47, 30425 (2021).

    Article  CAS  Google Scholar 

  43. L. Luo, K. Li, Fu. Weng, C. Liu, and S. Yang, Constr. Build. Mater. 232, 117250 (2020).

    Article  CAS  Google Scholar 

  44. J.E.F. Ibrahim, O.B. Kotova, S. Sun, E. Kurovics, M. Tihtih, and L.A. Gömze, J. Build. Eng. 45, 103491 (2022).

    Article  Google Scholar 

  45. Wu. Zhen, L. Sun, and J. Wang, Mater. Sci. Technol. 31, 1237 (2015).

    Article  ADS  Google Scholar 

  46. M. Heidari, A. Zamaniyan, A. SafeKordi, E.G. Babakhani, and M. Amanipour, Mater. Sci. Technol. 29, 137 (2013).

    Article  CAS  Google Scholar 

  47. Q. Wan, Y. Zhang, and R. Zhang, Cement Concr. Compos. 111, 103635 (2020).

    Article  CAS  Google Scholar 

  48. H. Xue, C. Han, M. Chen, H. Xing, G. Fan, and J. Zhou, Powder Technol. 410, 117862 (2022).

    Article  CAS  Google Scholar 

  49. S. Zhu, F. Duan, S. Feng, X. Liu, X. Kan, and Q. Lv, Mater. Res. Technol. 21, 3617 (2022).

    Article  CAS  Google Scholar 

  50. Y. Sun, X. Liu, W. Wang, Y. Yang, and W. Zhang, Mater. Sci. Technol. 144, 150 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Key Research and Development Program of China (2020YFC1908803) and the National Natural Science Foundation of China (52004284). We thank the Modern Analysis and Computing Center of China University of Mining and Technology for its help in testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baojing Zhang or Peizhong Feng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, H., Zhang, B., Yang, J. et al. Effect of Iron Content on High Strength and Environmentally Friendly Water-Permeable Bricks Prepared from W-Mo Tailing and Iron Slags. JOM 76, 1447–1455 (2024). https://doi.org/10.1007/s11837-023-06284-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06284-6

Navigation