Skip to main content
Log in

Resource Utilization of Cyanide Tailings: Preparation of Ferrous Oxalate by a Combined Technique of Anaerobic Roasting–Persulfate Leaching Followed by Oxalic Acid Precipitation

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The combined process of anaerobic roasting, persulfate leaching, and oxalic acid precipitation has been used to treat cyanide tailings, which achieved the harmless reduction and value-added utilization of the tailings while obtaining high-quality ferrous oxalate products. This paper focused on the main process and technical parameters of the resource utilization of cyanide tailings. The reaction mechanism of each step was further elucidated by analyzing and characterizing the various products. After roasting in a nitrogen atmosphere, the pyrite in the cyanide tailings was converted into pyrrhotite by removing elemental sulfur, and the sulfur removal ratio reached 37.73%. The iron leaching ratio of the roasted products reached 97.22% under the optimum leaching conditions. The oxidative decomposition of pyrrhotite in the leaching process mainly depended on persulfate and the free radicals generated by its self-activation. Iron entered the leaching solution in the form of Fe3+/Fe2+, while sulfur was oxidized to elemental sulfur and SO42-. After the small amount of Fe3+ remaining in leaching solution was reduced to Fe2+ by the iron powder, Fe2+ could be complexed by oxalate to obtain α-type ferrous oxalate, and the iron precipitation ratio could reach 82.54%. The total mass loss ratio reached 43.50%, with both gold and silver enriched in the leaching residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.Y. Li, S.W. Li, C. Srinivasakannan, L.B. Zhang, S.H. Yin, K. Yang, and H.M. Xie, Ultrason. Sonochem. https://doi.org/10.1016/j.ultsonch.2018.07.034 (2018).

    Article  Google Scholar 

  2. H.Y. Li, H.L. Long, L.B. Zhang, S.H. Yin, S.W. Li, F. Zhu, and H.M. Xie, J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2019.121456 (2020).

    Article  Google Scholar 

  3. S. Acar, Miner. Metall. Proc. (2016) https://doi.org/10.19150/mmp.6837

  4. A. Rabieh, J.J. Eksteen, and B. Albijanic, Miner. Eng. https://doi.org/10.1016/j.mineng.2017.10.018 (2018).

    Article  Google Scholar 

  5. X.Y. Guo, H. Qin, Q.H. Tian, and L. Zhang, J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2020.121147 (2020).

    Article  Google Scholar 

  6. N. Kuyucak, and A. Akcil, Miner. Eng. (2013) https://doi.org/10.1016/j.mineng.2013.05.027

  7. K.W. Dong, F. Xie, W. Wang, Y.F. Chang, D.K. Lu, X.W. Gu, and C.L. Chen, J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2021.126946 (2021).

    Article  Google Scholar 

  8. C.Y. Xu, C.B. Sun, X.L. Mo, and T.C. Sun, Matel Mine (12), 148-151+156 (2008)

  9. Y.L. Zhang, H.M. Li, and X.J. Yu, J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2012.01.076 (2012).

    Article  Google Scholar 

  10. X.B. Li, W. Xiao, W. Liu, G.H. Liu, Z.H. Peng, Q.S. Zhou, T.G. Qi, and T. Nonferr, Metal. Soc. https://doi.org/10.1016/s1003-6326(08)60447-1 (2009).

    Article  Google Scholar 

  11. D.X. Li, G.L. Gao, F.L. Meng, and C. Ji, J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2007.11.070 (2007).

    Article  Google Scholar 

  12. Y.L. Li, D.X. Li, J.B. Li, J. Wang, A. Hussain, H. Ji, and Y.J. Zhai, J. Environ. Sci. https://doi.org/10.1016/j.jes.2014.05.038 (2014).

    Article  Google Scholar 

  13. J. Kiventerä, I. Lancellotti, M. Catauro, F.D. Poggetto, C. Leonelli, and M. Illikainen, J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2018.03.182 (2018).

    Article  Google Scholar 

  14. Y.L. Zhang, H.M. Li, X.J. and Yu, T. Nonferr. Metal. Soc. (2013) https://doi.org/10.1016/s1003-6326(13)62579-0

  15. J.J. Li, Y.Q. Liang, P.L. Jin, B. Zhao, Z.H. Zhang, X.J. He, Z.L. Tan, L. Wang, and X.W. Cheng, Catalysts. https://doi.org/10.3390/catal12091024 (2022).

    Article  Google Scholar 

  16. X.D. Du, Y.Q. Zhang, I. Hussain, S.B. Huang, and W.L. Huang, Chem. Eng. J. https://doi.org/10.1016/j.cej.2016.10.138 (2016).

    Article  Google Scholar 

  17. S.Y. Yang, P. Wang, X. Yang, L. Shan, W.Y. Zhang, X.T. Shao, and R. Niu, J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2010.03.039 (2010).

    Article  Google Scholar 

  18. C.G. Emine, S.Y. Guvenc, K. Nihal, and V. Gamze, Environ. Prog. Sustain Energy. https://doi.org/10.1002/ep.13508 (2020).

    Article  Google Scholar 

  19. Y. Tang, G.H. Li, Y. Yong, J. Ma, Y.X. Zhi, Y.Y. Yao, L.L Zheng, and B.Y. Tuo, J. Sustain. Metall. (2021) https://doi.org/10.1007/s40831-021-00416-5

  20. C.W. Luo, J. Ma, J. Jiang, Y.Z. Liu, Y. Song, Y. Yang, Y.H. Guan, and D.J. Wu, Water Res. https://doi.org/10.1016/j.watres.2015.05.019 (2015).

    Article  Google Scholar 

  21. X.Q. Zhou, A. Jawad, M.Y. Luo, C.G. Luo, T.T. Zhang, H.B. Wang, J. Wang, S.L. Wang, Z.L. Chen, and Z.Q. Chen, Appl. Catal. B Environ. https://doi.org/10.1016/j.apcatb.2021.119914 (2021).

    Article  Google Scholar 

  22. Y. Li, L.D. Liu, L. Liu, Y. Liu, H.W. Zhang, and X. Han, J. Mol. Catal. A Chem. https://doi.org/10.1016/j.molcata.2015.10.036 (2016).

    Article  Google Scholar 

  23. X.B. Wang, Y.Y. Wang, N. Chen, Y.B. Shi, and L.Z. Zhang, Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.125568 (2019).

    Article  Google Scholar 

  24. X.X. Zheng, X.J. Niu, D.Q. Zhang, X.Y. Ye, J.L. Ma, M.Y. Lv, and Z. Lin, Chem. Eng. J. https://doi.org/10.1016/j.cej.2021.132565 (2021).

    Article  Google Scholar 

  25. F. Rahimi, J.P. Hoek, S. Royer, A. Javid, A. M, and M.J. San, J. Water Process. Eng. (2020) https://doi.org/10.1016/j.jwpe.2020.101808

  26. B.C. Wu, G.H. Gu, S. Deng, D.H. Liu, and X.X. Xiong, Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.02.062 (2019).

    Article  Google Scholar 

  27. D.H. Xia, R. Yin, J.L. Sun, T.C. An, G.Y. Li, W.J. Wang, H.J. Zhao, and P.K. Wong, J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2017.07.029 (2017).

    Article  Google Scholar 

  28. D.H. Xia, Y. Li, G.C. Huang, R. Yin, T.C. An, G.Y. Li, H.J. Zhao, A.H. Lu, and P.K. Wong, Water Res. https://doi.org/10.1016/j.watres.2017.01.052 (2017).

    Article  Google Scholar 

  29. W.G. Lv, D.S. Ruan, X.H. Zheng, L. Li, H.B. Cao, Z.H. Wang, Y. Zhang, and Z. Sun, Chem. Eng. J. Eng. J. https://doi.org/10.1016/j.cej.2021.129908 (2021).

    Article  Google Scholar 

  30. M.M. Zhou, C.L. Lin, H.J. Luo, J.W. Wang, and X. Sun, Green Chem. https://doi.org/10.1039/c8gc02755b (2018).

    Article  Google Scholar 

  31. K.Y. Zhang, R.H. Xu, R.H. Wei, Y. Li, Y.K. Wang, Y.N. Zhang, Y.N. Dai, and Y.C. Yao, Mater. Chem. Phys. https://doi.org/10.1016/j.matchemphys.2020.122676 (2020).

    Article  Google Scholar 

  32. K.Y. Zhang, Y. Li, Y.K. Wang, J.Y. Zhao, X.M. Chen, Y.N. Dai, and Y.C. Yao, Chem. Eng. J. https://doi.org/10.1016/j.cej.2019.123281 (2019).

    Article  Google Scholar 

  33. C.B. Li, Y.Z. Ning, T.H. Yan, and W.F. Zheng, Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02758 (2019).

    Article  Google Scholar 

  34. Z.Q. Zhao, X.M. Chen, J. Wu, W.J. Wang, B.Y. He, Q. Yin, P.L. Xu, and L. Liu, J. Solut. Chem. https://doi.org/10.1007/s10953-022-01159-x (2022).

    Article  Google Scholar 

  35. P. Dong, Y.H. Song, L. Wu, J. Bao, N. Yin, R.Y. Zhu, and Y.F. Li, Environ. Sci. Pollut. Res. (2023) https://doi.org/10.1007/s11356-023-25813-z

  36. S. Chinchón-Payá, A. Aguado, and S. Chinchón, Eng. Geol. https://doi.org/10.1016/j.enggeo.2011.12.003 (2012).

    Article  Google Scholar 

  37. Y.H. Chen, Y.H. Chen, W.D. Hsu, Y.C. Chang, H.S. Sheu, J.J. Lee, and S.K. Lin, Sci. Rep. https://doi.org/10.1038/s41598-019-44319-8 (2019).

    Article  Google Scholar 

  38. S.Y. Oh, S.G. Kang, D.W. Kim, and P.C. Chiu, Chem. Eng. J. https://doi.org/10.1016/j.cej.2011.06.023 (2011).

    Article  Google Scholar 

  39. N. Boyabat, A.K. Özer, S. Bayrakçeken, and M.S. Gülaboğlu, Fuel Process. Technol. https://doi.org/10.1016/s0378-3820(03)00196-6 (2004).

    Article  Google Scholar 

  40. X. Xin, J.X. Zhao, Z. Wang, Z.X. Tan, A.L. Hu, W.D. Tang, H. Wang, and Z.L. Zhang, Mine. Matal. 31(1), 91–108 (2022).

    Google Scholar 

  41. X.L. Zhang, C.B. Sun, Y. Xing, J. Kou, and M. Su, Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2018.07.012 (2018).

    Article  Google Scholar 

  42. H. Chen, Z.L. Zhang, M.B. Feng, W. Liu, W.J. Wang, Q. Yang, and Y.N. Hu, Chem. Eng. J. https://doi.org/10.1016/j.cej.2016.12.075 (2016).

    Article  Google Scholar 

  43. J.H. Fan, L. Gu, D.L. Wu, and Z.G. Liu, Chem. Eng. J. https://doi.org/10.1016/j.cej.2017.09.175 (2017).

    Article  Google Scholar 

  44. P.C. Xie, J. Ma, W. Liu, J. Zou, S.Y. Yue, X.C. Li, M.R. Wiesner, and J.Y. Fang, Water Res. https://doi.org/10.1016/j.watres.2014.11.029 (2014).

    Article  Google Scholar 

  45. M.D. Turan Can. Metall. Q. (2014) https://doi.org/10.1179/1879139514y.0000000141

  46. B.Z. Li, L. Lin, K.F. Lin, W. Zhang, S.G. Lu, and Q.S. Luo, Ultrason. Sonochem. https://doi.org/10.1016/j.ultsonch.2012.11.014 (2012).

    Article  Google Scholar 

  47. W.J. Lian, X.Y. Yi, K.B. Huang, T. Tang, R. Wang, X.Q. Tao, Z.L. Zheng, Z. Dang, H. Yin, and G.N. Lu, Ecotox. Environ. Saf. https://doi.org/10.1016/j.ecoenv.2019.03.027 (2019).

    Article  Google Scholar 

  48. N. Belzile, Y.W. Chen, M.F. Cai, and Y.R. Li, J. Geochem. Explor. https://doi.org/10.1016/j.gexplo.2004.03.003 (2004).

    Article  Google Scholar 

  49. M.H. Nie, Y. Yang, Z.J. Zhang, C.X. Yan, X.N. Wang, H.J. Li, and W.B. Dong, Chem. Eng. J. https://doi.org/10.1016/j.cej.2014.02.047 (2014).

    Article  Google Scholar 

  50. M.D. Sokić, B. Marković, and D. Živković, Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2008.06.012 (2009).

    Article  Google Scholar 

  51. T.T. Zhu, X.C. Lu, H. Liu, J. Li, X.Y. Zhu, J.J. Lu, and R.C. Wang, Geochim. Cosmochim. Acta Acta. https://doi.org/10.1016/j.gca.2013.11.025 (2014).

    Article  Google Scholar 

  52. X.E. Dang, and T. Zhang, Gold 43(12), 86–92 (2022).

    Google Scholar 

  53. Y.C. Su, H.Y. Chen, Z.X. Hu, S.N. Liu, and L.H. Xiao, J. Cent. South Univ. (Sci. Tech.) 44(06), 2237-2243 (2013)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51774227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghui Song or Lei Wu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, P., Song, Y., Wu, L. et al. Resource Utilization of Cyanide Tailings: Preparation of Ferrous Oxalate by a Combined Technique of Anaerobic Roasting–Persulfate Leaching Followed by Oxalic Acid Precipitation. JOM 76, 432–444 (2024). https://doi.org/10.1007/s11837-023-06223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06223-5

Navigation