Skip to main content
Log in

Formation, Aggregation, and Composite with Oxide Mechanisms of Oxysulfide in 1215MS Free-Cutting Steel

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Oxygen is an important element for improving the sulfide morphology in steels that require machinability. Therefore, 50 ppm oxygen was added to 1215MS free-cutting steel under industrial conditions; the effect of oxygen on sulfide morphology and the formation mechanism of three types of sulfides were explored. The precipitation temperature of sulfide in steel at equilibrium state is 1489.98°C; oxygen can dissolve in MnS to form spherical single-particle Mn(S,O). Annular polycrystalline Mn(S,O) with a diameter of 10 μm was observed by characterization of scanning electron microscopy and electron backscatter diffraction (SEM and EBSD). It is formed by three stages of contact, sintering and densification. Sintering force is a vital force in the formation of polycrystalline Mn(S,O). Mn(S,O)-MOx(M = Si,Al,Mn,Fe) composite inclusion is formed by a liquid inclusion, (Mn,Si,Al,Fe)x(O,S)y; the precipitation order of different phases is FeO, Mn(S,O), (Si,Mn,Al)xOy and (Si,Al,Mn)xOy. (Si,Mn,Al)xOy is Mn2SiO4 with dissolved Al, while (Si,Al,Mn)xOy is Mn3Al2Si3O12 when the atomic content of Al2O3 in liquid inclusion is > 0.063.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8S
Fig. 9

Similar content being viewed by others

References

  1. Y. Wang, Y. Yang, Z. Dong, J.H. Park, Z. Mi, X. Mao, and W. Mu, Metall. Mater. Trans. B 53, 2182 (2022).

    Article  Google Scholar 

  2. L. Jin, S. Zheng, and M. Zhu, JOM (2023), published online.

  3. C. Temmel, B. Karlsson, and N. Ingesten, Metall. and Mater. Trans. A 37, 2995 (2006).

    Article  Google Scholar 

  4. L.E.K. Holappa, and A.S. Helle, J. Mater. Process. Tech. 53, 177 (1995).

    Article  Google Scholar 

  5. N. Tsunekage, and H. Tsubakino, ISIJ Int. 41, 498 (2001).

    Article  Google Scholar 

  6. T. Nishimura, S. Koishi, Y. Yamamoto, Y. Wada, K. Mine, and Y. Shinjo, Kawasaki Steel. Tech. Rep. 8, 77 (1983).

    Google Scholar 

  7. C.E. Sims, Trans. Am. Inst. Min. Metall. Eng. 215, 367 (1959).

    Google Scholar 

  8. S. Lin, H. Yang, Y. Su, K. Chang, C. Yang, S. Lin, and J. Alloy, Compd. 779, 844 (2019).

    Article  Google Scholar 

  9. D.H. Woo, H.G. Lee, and J. Am, Ceram. Soc. 93, 2098 (2010).

    Article  Google Scholar 

  10. Y.J. Kim, D.H. Woo, H. Gaye, H. Lee, and T. Kang, Metall. Mater. Trans. B 42, 535 (2011).

    Article  Google Scholar 

  11. G. Wang, S. Li, X. Ai, C. Zhang, and C. Lai, J. Iron Steel Res. Int. 22, 566 (2015).

    Article  Google Scholar 

  12. Q. Zhang, Y. Min, H. Xu, and C. Liu, ISIJ Int. 58, 1250 (2018).

    Article  Google Scholar 

  13. Y. Ren, and L. Zhang, Ironmak. Steelmak. 46, 558 (2019).

    Article  Google Scholar 

  14. Q. Tian, B. Liu, W. Shen, T. Hu, J. Fu, and X. Xu, Steel Res. Int. 4, 2200674 (2023).

    Article  Google Scholar 

  15. E.T. Turkdogan, G.J.W. Kor, L.S. Darken, and R.W. Gurry, Metall. Trans. 2, 1561 (1971).

    Article  Google Scholar 

  16. G.J.W. Kor, and E.T. Turkdogan, Metall. Trans. 3, 1269 (1972).

    Article  Google Scholar 

  17. M. Nakamoto, T. Tanaka, M. Suzuki, K. Taguchi, Y. Tsukaguchi, and T. Yamamoto, ISIJ Int. 54, 1195 (2014).

    Article  Google Scholar 

  18. S. Lee, and W.M. Sigmund, Colloid. Surface. A 204, 43 (2002).

    Article  Google Scholar 

  19. W.Z. Mu, N. Dogan, and K.S. Coley, Metall. Mater. Trans. B 48, 2092 (2017).

    Article  Google Scholar 

  20. W.Z. Mu, N. Dogan, and K.S. Coley, Metall. Mater. Trans. B 48, 2379 (2017).

    Article  Google Scholar 

  21. O. Sudre, and F.F. Lange, J. Am. Ceram. Soc. 75, 3241 (1992).

    Article  Google Scholar 

  22. D.A. Caillet, and D.P. Harrison, Chem. Eng. Sci. 37, 625 (1982).

    Article  Google Scholar 

  23. F. Wakai, K. Katsura, S. Kanchika, Y. Shinoda, T. Akatsu, and K. Shinagawa, Acta Mater. 109, 292 (2016).

    Article  Google Scholar 

  24. F. Wakai, and K.A. Brakke, Acta Mater. 59, 5379 (2011).

    Article  Google Scholar 

  25. J. Gleinig, A. Weidner, J. Fruhstorfer, C.G. Aneziris, O. Volkova, and H. Biermann, Metall. Mater. Trans. B 50, 337 (2019).

    Article  Google Scholar 

  26. H.S. Kim, H.G. Lee, and K.S. Oh, Metall. Mater. Trans. A 32, 1519 (2001).

    Article  Google Scholar 

  27. J. Chen, Q. Zhu, D. Huang, S. Zheng, J. Zhang, and H. Li, IOP Conference Series: Mater. Sci. Eng. 230, 012030 (2017).

    Google Scholar 

  28. M. Wakoh, T. Sawai, and S. Mizoguchi, Tetsu-to-Hagané 78, 1697 (1992).

    Article  Google Scholar 

  29. Y. Lu, and T. Miki, ISIJ Int. 61, 2360 (2021).

    Article  Google Scholar 

  30. P.N. Quested, and M. McLean, Mater. Sci. Eng. 65, 171 (1984).

    Article  Google Scholar 

  31. S. Akamatsu, and G. Faivre, Phys. Rev. E 58, 3302 (1998).

    Article  Google Scholar 

  32. Y. Kurosaki, M. Shiozaki, K. Higashine, and M. Sumimoto, ISIJ Int. 39, 607 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to National Natural Science Foundation of China (Grant No. 52074179) for supporting this work. One of the authors, Xiangyu Xu, gratefully acknowledges support from the National Natural Science Foundation of China (Youth Program no. 52104335) and Shanghai “Super Postdoctoral” Incentive Plan (Grant No. 2020194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Q., Shen, W., Zhang, X. et al. Formation, Aggregation, and Composite with Oxide Mechanisms of Oxysulfide in 1215MS Free-Cutting Steel. JOM 75, 5764–5772 (2023). https://doi.org/10.1007/s11837-023-06141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06141-6

Navigation