Skip to main content

Advertisement

Log in

Advances in Inorganic Solid Electrolytes: A Mini Review

  • Mechanistic Interactions in Energy Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Solid-state electrolytes (SSEs) have emerged as an important field of research and development for advanced battery technologies, with tremendous potential for applications across industries. The advantages of inorganic solid electrolytes (ISEs) include high mechanical strength, high safety, excellent chemical stability, and compatibility with high-energy-density electrodes. These properties enable ISEs to improve the performance and safety of batteries, offering great potential for the fabrication of high-performance solid-state batteries and attracting widespread research interest. This mini review highlights the potential applications of SSEs and recent advances in the types and preparation methods of ISEs, while also pointing out the opportunities and challenges facing ISEs. Further development of low-cost preparation methods, improved ion transport efficiency, and enhanced stability and safety of ISEs are needed to achieve continued progress in solid-state battery technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article.

References

  1. S. Pratiwi, R.O. Bura, and E. Kartini, CESIT 1, 656 (2020).

    Google Scholar 

  2. K. Cavanagh, J.K. Ward, S. Behrens, A.I. Bhatt, E.L. Ratnam, E. Oliver, and J. Hayward, Electrical Energy Storage: Technology Overview and Applications (CSIRO, Mayfield West, NSW, 2015).

    Google Scholar 

  3. K.M. Abraham, ACS Energy Lett. 5(11), 3544 (2020).

    Article  CAS  Google Scholar 

  4. Q.Y. Li, S.H. Jiao, L.L. Luo, M.S. Ding, J.M. Zheng, S.S. Cartmell, C.M. Wang, K. Xu, J.G. Zhang, and W. Xu, ACS Appl. Mater. Interfaces 9(22), 18826 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. H. Kitaura and H. Zhou, Sci. Rep. 5, 13271 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. R. Nakayama, K. Nishio, D. Imazeki, N. Nakamura, R. Shimizu, and T. Hitosugi, Nano Lett. 21(13), 5572 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Z.H. Wei, Y.Q. Ren, M.K. Wang, J.J. He, W.R. Huo, and H. Tang, Nanoscale Res. Lett. 15(1), 122 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. B.B. Wu, S.Y. Wang, J. Lochala, D. Desrochers, B. Liu, W.Q. Zhang, J.H. Yang, and J. Xiao, Energy Environ. Sci. 11(7), 1803 (2018).

    Article  CAS  Google Scholar 

  9. S.P. Jiang, Electrochem. Energy Rev. 5(1), 21 (2022).

    Article  CAS  Google Scholar 

  10. N. Wang, R.K. Miao, G. Lee, A. Vomiero, D. Sinton, A.H. Ip, H. Liang, and E.H. Sargent, SmartMat 2(1), 12 (2021).

    Article  CAS  Google Scholar 

  11. A. Miyamoto, Y. Kuwaki, T. Sano, K. Hatakeyama, A. Quitain, M. Sasaki, and T. Kida, ACS Omega 2(6), 2994 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Chaichi, G. Venugopalan, R. Devireddy, C. Arges, and M.R. Gartia, ACS Appl. Energy Mater. 3(6), 5693 (2020).

    Article  CAS  Google Scholar 

  13. R. Pandey, S. Singh, and P. Singh, J. Mater. Sci. Mater. Electron. 31(14), 11325 (2020).

    Article  CAS  Google Scholar 

  14. S.X. Xia, X.S. Wu, Z.C. Zhang, Y. Cui, and W. Liu, Chemistry 5(4), 753 (2019).

    Article  CAS  Google Scholar 

  15. G. Lombardo, B. Ebin, M.R.S.J. Foreman, B.M. Steenari, and M. Petranikova, ACS Sustain. Chem. Eng. 7(16), 13668 (2019).

    Article  CAS  Google Scholar 

  16. J.L. Song, W.Y. Yan, H.B. Cao, Q.B. Song, H. Ding, Z. Lv, Y. Zhang, and Z. Sun, J. Clean. Prod. 215, 570 (2019).

    Article  CAS  Google Scholar 

  17. R. Danino-Perraud, The Recycling of Lithium-Ion Batteries: A Strategic Pillar for the European Battery Alliance (Institut français des relations internationales, Paris, 2020).

    Google Scholar 

  18. L.G. Wang, J. Li, G.L. Lu, W.Y. Li, Q.Q. Tao, C.H. Shi, H.L. Jin, G. Chen, and S. Wang, Front. Mater. 7, 111 (2020).

    Article  ADS  Google Scholar 

  19. B.B. Owens, Solid State Ion. 3, 273 (1981).

    Article  Google Scholar 

  20. C.W. Sun, J. Liu, Y.D. Gong, D.P. Wilkinson, and J.J. Zhang, Nano Energy 33, 363 (2017).

    Article  CAS  Google Scholar 

  21. J.W. Zhou, X.L. Li, C. Yang, Y.C. Li, K.K. Guo, J.L. Cheng, D.W. Yuan, C.H. Song, J. Lu, and B. Wang, Adv. Mater. 31(3), 1804439 (2019).

    Article  Google Scholar 

  22. H.T. Wang, K.S. Feng, P. Wang, Y.Y. Yang, L.X. Sun, F. Yang, W.Q. Chen, Y.Y. Zhang, and J.S. Li, Nat. Commun. 14, 1246 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. M. Carlier, Passenger AVs–solid-state battery market size worldwide 2020 & 2030 (2022). https://www.statista.com/statistics/1025235/projected-automotive-passenger-vehicle-solid-state-battery-market/#statisticContainer

  24. H. Liu, X.B. Cheng, J.Q. Huang, H. Yuan, Y. Lu, C. Yan, G.L. Zhu, R. Xu, C.Z. Zhao, L.P. Hou, C.X. He, S. Kaskel, and Q. Zhang, ACS Energy Lett. 5(3), 833 (2020).

    Article  CAS  Google Scholar 

  25. Y. Zhou, X. Zhang, Y. Ding, L. Zhang, and G. Yu, Adv. Mater. 32(48), 2005763 (2020).

    Article  CAS  Google Scholar 

  26. C.Z. Zhao, X.Q. Zhang, X.B. Cheng, R. Zhang, R. Xu, P.Y. Chen, H.J. Peng, J.Q. Huang, and Q. Zhang, Proc. Natl. Acad. Sci. 114(42), 11069 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. B.Y. Li, Q.M. Su, L.T. Yu, S.J. Dong, M. Zhang, S.K. Ding, G.H. Du, and B.S. Xu, J. Membr. Sci. 618, 118734 (2021).

    Article  CAS  Google Scholar 

  28. R. Pathak, K. Chen, A. Gurung, K.M. Reza, B. Bahrami, J. Pokharel, A. Baniya, W. He, F. Wu, Y. Zhou, K. Xu, and Q. Qiao, Nat. Commun. 11, 93 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Q. Lv, Y.P. Jiang, B. Wang, Y.J. Chen, F. Jin, B.C. Wu, H.Z. Ren, N. Zhang, R.Y. Xu, Y.H. Li, T.R. Zhang, Y. Zhou, D.L. Wang, H.K. Liu, and S.X. Dou, Cell Rep. Phys. Sci. 3(1), 100706 (2022).

    Article  CAS  Google Scholar 

  30. Q. Tu, L. Barroso-Luque, T. Shi, and G. Ceder, Cell Rep. Phys. Sci. 1(7), 100106 (2020).

    Article  Google Scholar 

  31. H. Tong, J. Liu, Y. Qiao, and X.P. Song, J. Power Sources 521, 230964 (2022).

    Article  CAS  Google Scholar 

  32. K.H. Nie, Y.S. Hong, J.L. Qiu, Q.H. Li, X.Q. Yu, H. Li, and L.Q. Chen, Front. Chem. 6, 616 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. C.H. Wang, K. Adair, and X.L. Sun, Acc. Mater. Res. 3, 21 (2022).

    Article  CAS  Google Scholar 

  34. Y. Zeng, B. Ouyang, J. Liu, Y.W. Byeon, Z.J. Cai, L.J. Miara, Y. Wang, and G. Ceder, Science 378(6626), 1320 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. M.K. Tufail, P.B. Zhai, M.Y. Jia, N. Zhao, and X.X. Guo, Energy Mater. Adv. 4, 15 (2023).

    Article  CAS  ADS  Google Scholar 

  36. T. Koç, F. Marchini, G. Rousse, R. Dugas, and J.-M. Tarascon, ACS Appl. Energy Mater. 4(12), 13575 (2021).

    Article  Google Scholar 

  37. Z. Li, J.L. Fu, and X. Guo, Natl. Sci. Open 2, 20220036 (2023).

    Article  Google Scholar 

  38. Q.C. Zhu, C. Ye, and D.Y. Mao, Nanomaterial 12(20), 3612 (2022).

    Article  CAS  Google Scholar 

  39. P.Y. Yen, M.L. Lee, D.H. Gregory, and W.R. Liu, Ceram. Int. 46(12), 20529 (2020).

    Article  CAS  Google Scholar 

  40. N. Asim, S. Ahmadi, M.A. Alghoul, F.Y. Hammadi, K. Saeedfar, and K. Sopian, Int. J. Photoenergy 2014, 518156 (2014).

    Article  Google Scholar 

  41. J.N. Liang, Q. Sun, Y. Zhao, Y.P. Sun, C.H. Wang, W.H. Li, M.S. Li, D.W. Wang, X. Li, Y.L. Liu, K. Adair, R.Y. Li, L. Zhang, R. Yang, S.G. Lu, H. Huang, and X.L. Sun, J. Mater. Chem. A 6(46), 23712 (2018).

    Article  CAS  Google Scholar 

  42. L. Zhu, Y.W. Wang, J.C. Chen, W.L. Li, T.T. Wang, J. Wu, S.Y. Han, Y.H. Xia, Y.M. Wu, M.Q. Wu, F.W. Wang, Y. Zheng, L.M. Peng, J.J. Liu, L.Q. Chen, and W.P. Tang, Sci. Adv. 8(11), eabj7698 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. D.D. Jiang, X.J. Wang, R.Z. Chen, J. Sun, H. Kang, D.Z. Ji, Y.Q. Liu, and D.C. Wei, J. Am. Chem. Soc. 144(19), 8746 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. T. Amrillah, C.A. Abdullah, A. Hermawan, F.N. Sari, and V.N. Alviani, Nanomaterial 12(23), 4280 (2022).

    Article  CAS  Google Scholar 

  45. Y.H. Zhang, Y.X. Deng, X.L. Gao, C. Lv, D.W. Luo, and X. Xiang, J. Alloys Compd. 881, 160620 (2021).

    Article  CAS  Google Scholar 

  46. S.K. Gupta and Y. Mao, Prog. Mater. Sci. 117, 100734 (2021).

    Article  CAS  Google Scholar 

  47. A. Paulus, S. Kammler, S. Heuer, M.C. Paulus, P. Jakes, J. Granwehr, and R.-A. Eichel, J. Electrochem. Soc. 166(3), A5403 (2019).

    Article  CAS  Google Scholar 

  48. Z.J. Sun, L. Liu, Y.X. Lu, G.Y. Shi, J.J. Li, L. Ma, J. Zhao, and H.L. An, J. Eur. Ceram. Soc. 39(2), 402 (2019).

    Article  CAS  Google Scholar 

  49. A. Kızılaslan, M. Kırkbınar, T. Cetinkaya, and H. Akbulut, Phys. Chem. Chem. Phys. 22(30), 17221 (2020).

    Article  PubMed  Google Scholar 

  50. Y.L. Sun, K. Suzuki, S. Hori, M. Hirayama, and R. Kanno, Chem. Mater. 29(14), 5858 (2017).

    Article  CAS  Google Scholar 

  51. J.M. Whiteley, J.H. Woo, E. Hu, K.W. Nam, and S.H. Lee, J. Electrochem. Soc. 161(12), A1812 (2014).

    Article  Google Scholar 

  52. J. Park, J.P. Son, W. Ko, J.S. Kim, Y. Choi, H. Kim, H. Kwak, D.H. Seo, J. Kim, and Y.S. Jung, ACS Energy Lett. 7(10), 3293 (2022).

    Article  CAS  Google Scholar 

  53. N. Tanibata, S. Takimoto, K. Nakano, H. Takeda, M. Nakayama, and H. Sumi, ACS Mater. Lett. 2(8), 880 (2020).

    Article  CAS  Google Scholar 

  54. T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, and S. Hasegawa, Adv. Mater. 30(44), 1803075 (2018).

    Article  Google Scholar 

  55. F. Zhu, M.S. Islam, L. Zhou, Z.Q. Gu, T. Liu, X.C. Wang, J. Luo, C.W. Nan, Y.F. Mo, and C. Ma, Nat. Commun. 11(1), 1828 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Q. Zhang, D.X. Cao, Y. Ma, A. Natan, P. Aurora, and H.L. Zhu, Adv. Mater. 31(44), 1901131 (2019).

    Article  CAS  Google Scholar 

  57. J.W. Liang, X.N. Li, C.H. Wang, J.T. Kim, R. Yang, J.T. Wang, and X.L. Sun, Energy Mater. Adv. 4, 0021 (2023).

    Article  CAS  ADS  Google Scholar 

  58. Z.T. Liang, Y.X. Xiang, K.J. Wang, J.P. Zhu, Y.T. Jin, H.C. Wang, B.Z. Zheng, Z.R. Chen, M.M. Tao, X.S. Liu, Y.Q. Wu, R.Q. Fu, C.S. Wang, M. Winter, and Y. Yang, Nat. Commun. 14, 259 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. H.J. Wang, L.L. Wu, B. Xue, F. Wang, Z.K. Luo, X.H. Zhang, L. Calvez, P. Fan, and B. Fan, ACS Appl. Mater. Interfaces 14(13), 15214 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. P. Bron, S. Johansson, K. Zick, J. Schmedt auf der-Günne, S. Dehnen, and B. Roling, J. Am. Chem. Soc. 135(42), 15694 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. X.N. Li, J.W. Liang, X.F. Yang, K.R. Adair, C.H. Wang, F.P. Zhao, and X.L. Sun, Energy Environ. Sci. 13(5), 1429 (2020).

    Article  CAS  Google Scholar 

  62. J.S. Kim, S. Jung, H. Kwak, Y. Han, S. Kim, J. Lim, Y.M. Lee, and Y.S. Jung, Energy Storage Mater. 55, 193 (2023).

    Article  Google Scholar 

  63. H. Helmholtz, Ann. Phys. 243(7), 337 (1879).

    Article  Google Scholar 

  64. H. Adenusi, G.A. Chass, S. Passerini, K.V. Tian, and G. Chen, Adv. Energy Mater. 13(10), 2203307 (2023).

    Article  CAS  Google Scholar 

  65. K. Smith and C.Y. Wang, J. Power Sources 161, 628 (2006).

    Article  CAS  ADS  Google Scholar 

  66. H.K. Tian, R. Jalem, B. Gao, Y. Yamamoto, S. Muto, M. Sakakura, Y. Iriyama, and Y. Tateyama, ACS Appl. Mater. Interfaces 12(49), 54752 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. T. Tsuchiya, M. Takayanagi, K. Mitsuishi, M. Imura, S. Ueda, Y. Koide, T. Higuchi, and K. Terabe, Commun. Chem. 4(1), 117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Y. An, H.Q. Wang, Z.G. Yang, J.X. Yu, and S.P. Wang, ACS Appl. Mater. Interfaces 14(24), 27932 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, and L. Pilon, J. Phys. Chem. C 122(1), 194 (2018).

    Article  CAS  Google Scholar 

  70. Y.F. Liu, K. Han, D.N. Peng, L.Y. Kong, Y. Su, H.W. Li, H.Y. Hu, J.Y. Li, H.R. Wang, Z.Q. Fu, Q. Ma, Y.F. Zhu, R.R. Tang, S.L. Chou, Y. Xiao, and X.W. Wu, InfoMat 5(6), e12422 (2023).

    Article  CAS  Google Scholar 

  71. W.L. Zhang, Y. Lu, L. Wan, P. Zhou, Y.C. Xia, S.S. Yan, X.X. Chen, H.Y. Zhou, H. Dong, and K. Liu, Nat. Commun. 13(1), 2029 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Y. Tateyama, B. Gao, R. Jalem, and J. Haruyama, Curr. Opin. Electrochem. 17, 149 (2019).

    Article  CAS  Google Scholar 

  73. A.L. d’Entremont, Thermal Modeling of Electrochemical Capacitors (University of California, Los Angeles, 2015).

    Google Scholar 

  74. B. Akinwolemiwa, C. Peng, and G.Z. Chen, J. Electrochem. Soc. 162(5), A5054 (2015).

    Article  CAS  Google Scholar 

  75. X. Yang, B. Zhang, Y. Tian, Y. Wang, Z.Q. Fu, D. Zhou, H. Liu, F.Y. Kang, B.H. Li, C.S. Wang, and G.X. Wang, Nat. Commun. 14, 925 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. K. Kim, D. Park, H.G. Jung, K.Y. Chung, J.H. Shim, B.C. Wood, and S. Yu, Chem. Mater. 33(10), 3669 (2021).

    Article  CAS  Google Scholar 

  77. G.H. Yang, X.H. Liang, S.S. Zheng, H.B. Chen, W.T. Zhang, S.N. Li, and F. Pan, eScience 2, 79 (2022).

    Article  Google Scholar 

  78. R. Wei, S.J. Chen, T.Y. Gao, and W. Liu, Nano Sel. 2(12), 2256 (2021).

    Article  CAS  Google Scholar 

  79. S. Wang, Y.J. Wu, H. Li, L.Q. Chen, and F. Wu, InfoMat 4(8), e12316 (2022).

    Article  CAS  Google Scholar 

  80. K.Y. Tuo, C.W. Sun, and S.Q. Liu, Electrochem. Energy Rev. 6(1), 17 (2023).

    Article  CAS  Google Scholar 

  81. Q. Sun, Z.M. Fu, and Z.X. Yang, Ceram. Int. 44(4), 3707 (2018).

    Article  CAS  Google Scholar 

  82. A. Ejigu, L.W. Le Fevre, and R.A.W. Dryfe, Am. Chem. Soc. 13(12), 14112 (2021).

    CAS  Google Scholar 

  83. Q.L. Hu, Z.T. Sun, L. Nie, S.J. Chen, J.M. Yu, and W. Liu, Mater. Today Energy 27, 101052 (2022).

    Article  CAS  Google Scholar 

  84. M. Youssry and A. Mussa, Ceram. Int. 47(10), 14021 (2021).

    Article  CAS  Google Scholar 

  85. X.F. Chen, Z.Q. Guan, F.L. Chu, Z.C. Xue, F.X. Wu, and Y. Yu, InfoMat 4(1), e12248 (2022).

    Article  CAS  Google Scholar 

  86. B.S. Vishnugopi, E. Kazyak, J.A. Lewis, J. Nanda, M.T. McDowell, N.P. Dasgupta, and P.P. Mukherjee, ACS Energy Lett. 6(10), 3734 (2021).

    Article  CAS  Google Scholar 

  87. L. Xu, Y. Lu, C.Z. Zhao, H. Yuan, G.L. Zhu, L.P. Hou, Q. Zhang, and J.Q. Huang, Adv. Energy Mater. 11(4), 2002360 (2021).

    Article  CAS  Google Scholar 

  88. Y. Guo, S.C. Wu, Y.B. He, F.Y. Kang, L.Q. Chen, H. Li, and Q.H. Yang, eScience 2(2), 138 (2022).

    Article  Google Scholar 

  89. S.D. Huo, L. Sheng, W.D. Xue, L. Wang, H. Xu, H. Zhang, and X.M. He, InfoMat 5(3), e12394 (2023).

    Article  CAS  Google Scholar 

  90. J. Gao, Y.S. Zhao, S.Q. Shi, and H. Li, Chin. Phys. B 25(1), 018211 (2016).

    Article  ADS  Google Scholar 

  91. K.G. Naik, B.S. Vishnugopi, J. Datta, D. Datta, and P.P. Mukherjee, Appl. Mech. Rev. 75(1), 010802 (2023).

    Article  ADS  Google Scholar 

  92. X.Y. Ke, Y. Wang, G.F. Ren, and C. Yuan, Energy Storage Mater. 26, 313 (2020).

    Article  Google Scholar 

  93. A.A. Hubaud, D.J. Schroeder, B.J. Ingram, J.S. Okasinski, and J.T. Vaughey, J. Alloys Compd. 644, 804 (2015).

    Article  CAS  Google Scholar 

  94. J.L. Liu, T. Wang, J.J. Yu, S.Y. Li, H. Ma, and X.L. Liu, Mater. 16(6), 2510 (2023).

    Article  CAS  Google Scholar 

  95. T.D. Whatley, Stability Analysis of Ionically and Electronically Conductors in Energy Applications (University of Louisville, Louisville, KY, USA, 2022).

    Book  Google Scholar 

  96. P.M. Gonzalez Puente, S.B. Song, S.Y. Cao, L.Z. Rannalter, Z.W. Pan, X. Xiang, Q. Shen, and F. Chen, J. Adv. Ceram. 10(5), 933 (2021).

    Article  CAS  Google Scholar 

  97. D. Karabelli, K.P. Birke, and M. Weeber, Batteries 7(1), 18 (2021).

    Article  CAS  Google Scholar 

  98. J.Q. Sun, C.H. He, X.M. Yao, A.Q. Song, Y.G. Li, Q.H. Zhang, C.Y. Hou, Q.W. Shi, and H.Z. Wang, Adv. Funct. Mater. 31(1), 2006381 (2021).

    Article  CAS  Google Scholar 

  99. M.A. Penilla Garcia, S.K. Gupta, and Y.B. Mao, Ceram. Int. 46(2), 1352 (2020).

    Article  CAS  Google Scholar 

  100. J.X. Cai, H.L. Zhu, W. Liu, Y.X. Qi, H. Yang, T. Li, and Y.J. Bai, Mater. Today Sustain. 19, 100192 (2022).

    Article  Google Scholar 

  101. S. Afyon, F. Krumeich, and J.L.M. Rupp, J. Mater. Chem. A 3(36), 18636 (2015).

    Article  CAS  Google Scholar 

  102. Y.T. Zhang, P.Y. Xin, and Q.F. Yao, J. Alloys Compd. 741, 404 (2018).

    Article  CAS  Google Scholar 

  103. P.F. Jiang, G.Y. Du, J.Q. Cao, X.Y. Zhang, C.C. Zou, Y.T. Liu, and X. Lu, Energy Technol. 11(3), 2201288 (2023).

    Article  CAS  Google Scholar 

  104. H. Su, Z. Jiang, Y. Liu, J.R. Li, C.D. Gu, X.L. Wang, X.H. Xia, and J.P. Tu, Energy Mater. 2(1), 200005 (2022).

    Google Scholar 

  105. S. Zhao, W. Jiang, X.X. Zhu, M. Ling, and C.D. Liang, Sustain. Mater. Technol. 33, e00491 (2022).

    CAS  Google Scholar 

  106. X.Y. Feng, H. Fang, N. Wu, P.C. Liu, P. Jena, J. Nanda, and D. Mitlin, Joule 6(3), 543 (2022).

    Article  CAS  Google Scholar 

  107. Y.T. Liu, R.H. Zhang, J. Wang, and Y. Wang, iScience 24(4), 102332 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Doctoral Research Initiation Project of Jinggangshan University (Natural Sciences) (JZB2307), and the Key projects of Natural Science Foundation of Jiangxi Province (20202ACBL203011).

Funding

The Doctoral Research Initiation Project of Jinggangshan University (Natural Sciences) (JZB2307), the Key projects of Natural Science Foundation of Jiangxi Province (20202ACBL203011).

Author information

Authors and Affiliations

Authors

Contributions

YAW—Data curation, Methodology, Validation, Conceptualization, Software, Investigation, Supervision, Writing—original draft & review & editing. LY—Validation, Software. CWL—Validation, Software, Investigation, Writing—original draft & review & editing. GHH—Funding acquisition.

Corresponding authors

Correspondence to Chang-Wei Luo or Gen-He He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

All authors agree to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YA., Yin, L., Luo, CW. et al. Advances in Inorganic Solid Electrolytes: A Mini Review. JOM 76, 1131–1142 (2024). https://doi.org/10.1007/s11837-023-06104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06104-x

Navigation