Skip to main content
Log in

Effect of Welding Conditions on Microstructure and Mechanical Properties of Friction Stir Welded AZ31 Mg Alloy Joints

  • Influence of Processing on Microstructure and Properties of Mg Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Friction stir welded (FSWed) AZ31 Mg alloy joints were prepared at two different rotation speeds, namely, 150 rpm and 500 rpm, and are referred to as FSW-150 and FSW-500, respectively. The microstructure of the FSW joints was characterized and the local strain evolution in the tensile tests was monitored by a high-resolution digital image correlation method. The results show that the stir zone (SZ) of both FSW joints showed an equiaxed grain structure and the thermal-mechanically affected zone (TMAZ) had a gradually varied texture in FSW-150, compared with the relatively stable texture in FSW-500. A basin-shaped SZ was formed in FSW-150, while a cylindrical-shaped SZ was formed in FSW-500. Due to the different shape of SZ, the strain was gradually increased in TMAZ through the thickness of the FSW-500 specimen in tensile tests. However, the FSW-150 specimen showed an inhomogeneous strain distribution through the thickness, which resulted in the shear tensile stress to be localized at the TMAZ/SZ boundary and early fracture of the tensile specimen. Finally, the FSW-500 specimen showed an improved tensile strength and elongation of 250 MPa and 17%, compared with the 210 MPa and 6% for the FSW-150 counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. K. Luo, L. Zhang, G. Wu, W. Liu, and W. Ding, J. Magnes. Alloys 7, 345 (2019).

    Article  Google Scholar 

  2. P. Cao, M. Qian, and D.H. St John, Scr. Mater. 54, 1853 (2006).

    Article  Google Scholar 

  3. S. Rajakumar, V. Balasubramanian, and A. Razalrose, Mater. Des. 49, 267 (2013).

    Article  Google Scholar 

  4. J. Zhang, G. Huang, S. Liu, Y. Xie, G. Wang, B. Jiang, A. Tang, and F. Pan, Mater. Sci. Eng. A 759, 479 (2019).

    Article  Google Scholar 

  5. Y.N. Wang, C.I. Chang, C.J. Lee, H.K. Lin, and J.C. Huang, Scr. Mater. 55, 637 (2006).

    Article  Google Scholar 

  6. A.N. Albakri, B. Mansoor, H. Nassar, and M.K. Khraisheh, J. Mater. Process. Technol. 213, 279 (2013).

    Article  Google Scholar 

  7. A. Dhanapal, S.R. Boopathy, and V. Balasubramanian, J. Alloys Compd. 523, 49 (2012).

    Article  Google Scholar 

  8. S. Mironov, T. Onuma, Y.S. Sato, and H. Kokawa, Acta Mater. 100, 301 (2015).

    Article  Google Scholar 

  9. S. Rajakumar, A. Razalrose, and V. Balasubramanian, Int. J. Adv. Manuf. Technol. 68, 277 (2013).

    Article  Google Scholar 

  10. S. Richmire, K. Hall, and M. Haghshenas, J. Magnes. Alloys 6, 215 (2018).

    Article  Google Scholar 

  11. A. Mishra, A.D. Gupta, A.K. Sharma, and G. Nidigonda, Int. J. Curr. Eng. Technol. 8, 372 (2018).

    Google Scholar 

  12. A.M. Desai, B.C. Khatri, V. Patel, and H. Rana, Mater. Today Proc. 47, 6576 (2021).

    Article  Google Scholar 

  13. A. Dorbane, G. Ayoub, B. Mansoor, R.F. Hamade, G. Kridli, R. Shabadi, and A. Imad, Mater. Sci. Eng. A-Struct. 649, 190 (2016).

    Article  Google Scholar 

  14. L. Commin, M. Dumont, J.E. Masse, and L. Barrallier, Acta Mater. 57, 326 (2009).

    Article  Google Scholar 

  15. Q. Sun, X. Fu, G. Chen, H. Dong, and W. Zhou, J. Mater. Res. Technol. 21, 2326 (2022).

    Article  Google Scholar 

  16. D.J. Liu, R.L. Xin, Y. Xiao, Z. Zhou, and Q. Liu, Mater. Sci. Eng. A-Struct. 609, 88 (2014).

    Article  Google Scholar 

  17. W. Woo, H. Choo, D.W. Brown, P.K. Liaw, and Z. Feng, Scr. Mater. 54, 1859 (2006).

    Article  Google Scholar 

  18. Z. Liu, R. Xin, D. Liu, X. Shu, and Q. Liu, Mater. Sci. Eng. A 658, 185 (2016).

    Article  Google Scholar 

  19. W. He, L. Zheng, R. Xin, and Q. Liu, Mater. Sci. Eng. A 687, 63 (2017).

    Article  Google Scholar 

  20. W. He, B. Luan, R. Xin, J. Xu, and Q. Liu, Comput. Mater. Sci. 104, 162 (2015).

    Article  Google Scholar 

  21. J.-L. Zhang, H. Liu, Y.-L. Xie, G.-S. Huang, X. Chen, B. Jiang, A.-T. Tang, and F.-S. Pan, Acta Metall. Sin. 33, 1487 (2020).

    Article  Google Scholar 

  22. R. Xin, D. Liu, X. Shu, B. Li, X. Yang, and Q. Liu, J. Alloys Compd. 670, 64 (2016).

    Article  Google Scholar 

  23. Z. Yu, H. Choo, Z. Feng, and S.C. Vogel, Scr. Mater. 63, 1112 (2010).

    Article  Google Scholar 

  24. Q. Shang, D.R. Ni, P. Xue, B.L. Xiao, and Z.Y. Ma, Mater. Sci. Eng. A 707, 426 (2017).

    Article  Google Scholar 

  25. G. Han, K. Lee, J.-Y. Yoon, T.-W. Na, K. Ahn, M.-J. Kang, and T.-S. Jun, Mater. Sci. Eng. A 805, 140809 (2021).

    Article  Google Scholar 

  26. J. Chen, H. Fujii, Y. Sun, Y. Morisada, and R. Ueji, Mater. Sci. Eng. A 580, 83 (2013).

    Article  Google Scholar 

  27. J.A. del Valle and O.A. Ruano, Mater. Sci. Eng. A-Struct. 487, 473 (2008).

    Article  Google Scholar 

  28. O. Sitdikov and R. Kaibyshev, Mater. Trans. 42, 1928 (2001).

    Article  Google Scholar 

  29. U. Suhuddin, S. Mironov, H. Takahashi, Y. Sato, H. Kokawa, and C.W. Lee, Solid State Phenom. 160, 313 (2010).

    Article  Google Scholar 

  30. S.H. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, and P. Wanjara, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 44A, 323 (2013).

    Article  Google Scholar 

  31. M. Janecek, J. Cizek, J. Gubicza, and J. Vratna, J. Mater. Sci. 47, 7860 (2012).

    Article  Google Scholar 

  32. D.J. Liu, R.L. Xin, H.N. Yu, Z. Liu, X. Zheng, and Q. Liu, Mat. Sci. Eng. A-Struct. 658, 229 (2016).

    Article  Google Scholar 

  33. S.H.C. Park, Y.S. Sato, and H. Kokawa, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 34A, 987 (2003).

    Article  Google Scholar 

  34. R.L. Xin, D.J. Liu, B. Li, L.Y. Sun, Z. Zhou, and Q. Liu, Mat. Sci. Eng. A-Struct. 565, 333 (2013).

    Article  Google Scholar 

  35. W. Woo, H. Choo, M.B. Prime, Z. Feng, and B. Clausen, Acta Mater. 56, 1701 (2008).

    Article  Google Scholar 

  36. S. Lim, S. Kim, C.G. Lee, C.D. Yim, and S.J. Kim, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 36A, 1609 (2005).

    Article  Google Scholar 

  37. D.J. Liu, Y.C. Tang, M.X. Shen, Y. Hu, and L.Z. Zhao, Metals 8, 16 (2018).

    Article  Google Scholar 

  38. S. Mironov, T. Onuma, Y.S. Sato, S. Yoneyama, and H. Kokawa, Mat. Sci. Eng. A-Struct. 679, 272 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the Henan provincial Joint Found of the National Natural Science Foundation of China (U2004170) and Natural Science Foundation of Henan Province (202300410474).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong Wu or Yufeng Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, Z., Huang, L. et al. Effect of Welding Conditions on Microstructure and Mechanical Properties of Friction Stir Welded AZ31 Mg Alloy Joints. JOM 75, 2374–2384 (2023). https://doi.org/10.1007/s11837-023-05833-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05833-3

Navigation