Skip to main content
Log in

Effect of Plastic Deformation on the Mechanical Properties of Dual-Phase Steels Using Nanoindentation

  • Design, Production, and Applications of Steels for a Sustainable Future
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The mechanical properties of two advanced high-strength steels (AHSS), DP 1000 and DP 1200 dual-phase (DP) grades, under deformed and undeformed conditions, were investigated using nanoindentation, and the results were compared with those obtained from the conventional methods. To this goal, 3-point bending tests were applied to induce deformation in the samples. Before and after these tests, nanoindentations were performed at different forces and indentation depths. In addition to the hardness and modulus of elasticity values of the steels, the residual stresses on the samples after deformation were obtained by using the equations suggested in the literature, also with x-ray diffraction (XRD). Finite element (FE) modeling of 3-point bending and nanoindentation were performed to obtain stress–strain curves of the materials numerically. The stress–strain curves obtained by numerical analysis agree well with those reported in the literature. The variations of the hardness and modulus of elasticity values are narrower for deeper indentation (50 nm versus 200 nm), and the effect of deformation is more pronounced on the modulus of elasticity values (10–30% increase with the deformation) while hardness values increased with the effect of deformation, 10% at most.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Kim, Great Designs in Steel Seminar, (2021), https://www.steel.org/gdis-2021-_-track-1_02_kim_chevrolet-trailblazer/. Accessed 2 Sep 2022.

  2. T. Ishikawa, Ch.1 in Microstructure Evolution in Metal Forming Processes (Eds. Jianguo Lin, Daniel Balint, Maciej Pietrzyk, Woodhead Publishing. https://doi.org/10.1533/9780857096340.1.3. (2012)

  3. S.K. Paul, N. Stanford, and T. Hilditch, Mater Sci. Eng. A 638, 296 https://doi.org/10.1016/j.msea.2015.04.059 (2015).

    Article  Google Scholar 

  4. S. Majumdar, S. Roy, and K.K. Ray, Fatigue Fract Eng. Mater. Struct. 40, 315 https://doi.org/10.1111/ffe.12491 (2017).

    Article  Google Scholar 

  5. S.K. Basantia, A. Bhattacharya, N. Khutia, and D. Das, Mater. Today Commun. 30, 103125 https://doi.org/10.1016/j.mtcomm.2022.103125 (2022).

    Article  Google Scholar 

  6. A. Meneses-Amador, D. Blancas-Pérez, R. Corpus-Mejía, G.A. Rodríguez-Castro, J. Martínez-Trinidad, and L.F. Jiménez-Tinoco, J. Mater. Eng. Perform. 27, 2089 https://doi.org/10.1007/s11665-018-3150-z (2018).

    Article  Google Scholar 

  7. W.L. Costin, O. Lavigne, and A. Kotousov, Mater. Sci. Eng. A 663, 193 https://doi.org/10.1016/j.msea.2016.03.103 (2016).

    Article  Google Scholar 

  8. J. Li, F. Li, X. Ma, Q. Wang, J. Dong, and Z. Yuan, Mater Des. 67, 623 https://doi.org/10.1016/j.matdes.2014.11.010 (2015).

    Article  Google Scholar 

  9. D. Ekmekci, F. Yılmaz, U. Kölemen, and Ö.N. Cora, Appl. Phys. A 123, 705 https://doi.org/10.1007/s00339-017-1327-1 (2017).

    Article  Google Scholar 

  10. D. Ekmekci, and Ö. N, Cora. Appl. Phys. A 126, 916 https://doi.org/10.1007/s00339-020-04095-z (2020).

    Article  Google Scholar 

  11. SSAB Tunnplat Docol® 1000 DP High-strength Steel, https://www.matweb.com/search/datasheet.aspx?matguid=def3d5be3ce1447c8af45a4cafe6ec43. Accessed 13 Feb 2023.

  12. SSAB Tunnplat Docol® 1200 DP High-strength Steel, https://www.matweb.com/search/datasheet.aspx?matguid=082094564da84b9dbb990ad8817a0989. Accessed 13 Feb 2023.

  13. A.C. Fischer-Cripps, Surf. Coat. Technol. 200, 4153 https://doi.org/10.1016/j.surfcoat.2005.03.018 (2006).

    Article  Google Scholar 

  14. W.C. Oliver, and G.M. Pharr, J. Mater. Res. 19, 3 https://doi.org/10.1557/jmr.2004.19.1.3 (2004).

    Article  Google Scholar 

  15. M. Lichinchi, C. Lenardi, J. Haupt, and R. Vitali, Thin Solid Films 312, 240 https://doi.org/10.1016/S0040-6090(97)00739-6 (1998).

    Article  Google Scholar 

  16. K.D. Bouzakis, M. Pappa, G. Maliaris, and N. Michailidis, Surf. Coat. Technol. 215, 218 https://doi.org/10.1016/j.surfcoat.2012.09.061 (2013).

    Article  Google Scholar 

  17. B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, Pearson Education Limited Third Edition 451–487 (2014).

  18. P.J. Withers, and H. Bhadeshia, Mater. Sci. Technol. 17, 355 https://doi.org/10.1179/026708301101509980 (2001).

    Article  Google Scholar 

  19. A.E. Giannakopoulos, and S. Suresh, Scr. Mater. 40, 1191 https://doi.org/10.1016/S1359-6462(99)00011-1 (1999).

    Article  Google Scholar 

  20. Q. Wang, K. Ozaki, H. Ishikawa, S. Nakano, and H. Ogiso, Nucl. Instrum. Methods Phys. Res. B 242, 88 https://doi.org/10.1016/j.nimb.2005.08.008 (2006).

    Article  Google Scholar 

  21. A. Kumar, S.B. Singh, and K.K. Ray, Mater Sci. Eng. A 474, 270 https://doi.org/10.1016/j.msea.2007.05.007 (2008).

    Article  Google Scholar 

  22. M.D. Taylor, E. De Moor, J.G. Speer, and D.K. Matlock, Steel Res Int. 92, 2100281 https://doi.org/10.1002/srin.202100281 (2021).

    Article  Google Scholar 

  23. R.M. Rahimi, and D.F. Bahr, Mater Sci. Eng. A 756, 328 https://doi.org/10.1016/j.msea.2019.04.063 (2019).

    Article  Google Scholar 

  24. F. Zhang, A. Ruimi, P.C. Wo, and D.P. Field, Mater Sci. Eng. A 659, 93 https://doi.org/10.1016/j.msea.2016.02.048 (2016).

    Article  Google Scholar 

  25. V.H.B. Hernandez, S.K. Panda, Y. Okita, and N.Y. Zhou, J. Mater. Sci. 45, 1638 https://doi.org/10.1007/s10853-009-4141-0 (2010).

    Article  Google Scholar 

  26. M. Delince, P.J. Jacques, and T. Pardoen, Acta Mater. 54, 3395 https://doi.org/10.1016/j.actamat.2006.03.031 (2006).

    Article  Google Scholar 

  27. S. Basu, N.G. Mathews, T.S. Chaudharı, and B.N. Jaya, Jom 74, 2245 https://doi.org/10.1007/s11837-022-05298-w (2022).

    Article  Google Scholar 

  28. J.L. Bucaille, S. Stauss, E. Felder, and J. Michler, Acta Mater. 51, 1663 https://doi.org/10.1016/S1359-6454(02)00568-2 (2003).

    Article  Google Scholar 

  29. K.D. Bouzakis, and N. Michailidis, Mater Charact. 56, 147 https://doi.org/10.1016/j.matchar.2005.10.005 (2006).

    Article  Google Scholar 

  30. K.H. Chung, W. Lee, J.H. Kim, C. Kim, S.H. Park, D. Kwon, and K. Chung, Int. J. Solids Struct. 46, 344 https://doi.org/10.1016/j.ijsolstr.2008.08.041 (2009).

    Article  Google Scholar 

  31. J. Lee, C. Lee, and B. Kim, Mater. Des. 30, 3395 https://doi.org/10.1016/j.matdes.2009.03.030 (2009).

    Article  Google Scholar 

  32. D.M. De Bono, T. London, M. Baker, and M.J. Whiting, Int. J. Mech. Sci. 123, 162 https://doi.org/10.1016/j.ijmecsci.2017.02.006 (2017).

    Article  Google Scholar 

  33. C. Moussa, O. Bartier, G. Mauvoisin, P. Pilvin, and G. Delattre, J. Mater. Res. 27, 20 https://doi.org/10.1557/jmr.2011.303 (2012).

    Article  Google Scholar 

  34. T.T. Huang, R.B. Gou, W.J. Dan, and W.G. Zhang, Mater Sci. Eng. A 672, 88 https://doi.org/10.1016/j.msea.2016.06.066 (2016).

    Article  Google Scholar 

  35. M. Gaško, and G. Rosenberg, Mater Eng. 18, 155 (2011).

    Google Scholar 

  36. A. Saai, O.S. Hopperstad, Y. Granbom, and O.G. Lademo, Procedia Mater Sci. 3, 900 https://doi.org/10.1016/j.mspro.2014.06.146 (2014).

    Article  Google Scholar 

  37. C.M. Poulin, Y.P. Korkolis, B.L. Kinsey, and M. Knezevic, Mater Des. 161, 95 https://doi.org/10.1016/j.matdes.2018.11.022 (2019).

    Article  Google Scholar 

  38. L. Zhu, B. Xu, H. Wang, and C. Wang, Mater Sci. Eng. A 536, 98 https://doi.org/10.1016/j.msea.2011.12.078 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by The Scientific and Technological Council of Türkiye (TÜBİTAK) under Grant No. 218M913. We extend our gratitude to SSAB for providing test materials used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Necati Cora.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekmekci, D., Uşun, A. & Cora, Ö.N. Effect of Plastic Deformation on the Mechanical Properties of Dual-Phase Steels Using Nanoindentation. JOM 75, 2246–2255 (2023). https://doi.org/10.1007/s11837-023-05791-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05791-w

Navigation