Skip to main content
Log in

Nano-Deformation Behavior of a Thermally Aged Duplex Stainless Steel Investigated by Nanoindentation, FIB and TEM

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nanoindentation and electron backscattering diffraction were conducted on a thermally aged duplex stainless steel to investigate the effect of crystal orientation on the plastic deformation behavior during indentation testing. Both nanohardness H and indentation modulus E are correlated with the orientation factor averaged over three normal directions of the contact surface. After thermal aging, the orientation dependence of the hardness and indentation modulus in ferrite significantly changed. For both the ferrite and austenite phases, the maximum and minimum values of the hardness and indentation modulus are given by the near-\(\left\langle {111} \right\rangle\)  and near-\(\left\langle {001} \right\rangle\)-oriented grains, respectively. The TEM analysis results indicate that the area of plastic deformation in the ferrite grain decreases after thermal aging. The interactions between precipitates and dislocations are considered to be responsible for the degradation of plastic deformation ability in ferrite. The anisotropy of hardness is related to the crystallographic nature and shearing mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. McConnell, W. Sheckherd, and D. Norris, Properties of Thermally Embrittled Cast Duplex Stainless Steel, J. Mater. Eng., 1989, 11(3), p 227–236

    Article  Google Scholar 

  2. H.-M. Chung, Aging and Life Prediction of Cast Duplex Stainless Steel Components, Int. J. Pres. Ves. Pip., 1992, 50(1–3), p 179–213

    Article  Google Scholar 

  3. J.B. Vogt, K. Massol, and J. Foct, Role of the Microstructure on Fatigue Properties of 475 °C Aged Duplex Stainless Steels, Int. J. Fatigue, 2002, 24(6), p 627–633

    Article  Google Scholar 

  4. S. Lee, P.-T. Kuo, and K. Wichman, Flaw Evaluation of Thermally Aged Cast Stainless Steel in Light-Water Reactor Applications, Int. J. Pres. Ves. Pip., 1997, 72(1), p 37–44

    Article  Google Scholar 

  5. K. Chandra, R. Singhal, V. Kain, and V.-S. Raja, Low Temperature Embrittlement of Duplex Stainless Steel Correlation Between Mechanical and Electrochemical Behavior, Mater. Sci. Eng. A., 2010, 527(16), p 3904–3912

    Article  Google Scholar 

  6. N. Jia, R.-L. Peng, G.-C. Chai, S. Johansson, and Y.-D. Wang, Direct Experimental Mapping of Microscale Deformation Heterogeneity in Duplex Stainless Steel, Mater. Sci. Eng. A., 2008, 491(1–2), p 425–433

    Article  Google Scholar 

  7. I. Alvarez-Armas, U. Krupp, M. Balbi, S. Hereñú, M.-C. Marinelli, and H. Knobbe, Growth of Short Cracks During Low and High Cycle Fatigue in a Duplex Stainless Steel, Int. J. Fatigue, 2012, 41(8), p 95–100

    Article  Google Scholar 

  8. K. Chandra, V. Kain, V. Bhutani, V.-S. Raja, R. Tewari, G.-K. Dey, and J.-K. Chakravartty, Low Temperature Thermal Aging of Austenitic Stainless Steel Welds: Kinetics and Effects on Mechanical Properties, Mater. Sci. Eng. A., 2012, 534(1), p 163–175

    Article  Google Scholar 

  9. S. Li, Y.-L. Wang, H.-L. Zhang, S.-X. Li, G. Wang, and X.-T. Wang, Effects of Prior Solution Treatment on Thermal Aging Behavior of Duplex Stainless Steels, J. Nucl. Mater., 2013, 441(1–3), p 337–342

    Google Scholar 

  10. J.-J. Shiao, C.-H. Tsai, J.-J. Kai, and J.-H. Huang, Aging Embrittlement and Lattice Image Analysis in a Fe-Cr-Ni Duplex Stainless Steel Aged at 400 °C, J. Nucl. Mater., 1994, 217(3), p 269–278

    Article  Google Scholar 

  11. J.-K. Sahu, U. Krupp, R.-N. Ghosh, and H.-J. Christ, Effect of 475 °C Embrittlement on the Mechanical Properties of Duplex Stainless Steel, Mater. Sci. Eng. A., 2009, 508(1), p 1–14

    Article  Google Scholar 

  12. K. Chandra, V. Kain, V.-S. Raja, R. Tewari, and G.-K. Dey, Low Temperature Thermal Ageing Embrittlement of Austenitic Stainless Steel Welds and Its Electrochemical Assessment, Corros. Sci., 2012, 54(1), p 278–290

    Article  Google Scholar 

  13. B.-B. He, M.-X. Huang, Z.-Y. Liang, A.-H. Ngan, H.-W. Luo, J. Shi, W.-Q. Cao, and H. Dong, Nanoindentation Investigation on the Mechanical Stability of Individual Austenite Grains in a Medium-Mn Transformation-Induced Plasticity Steel, Scr. Mater., 2013, 69(3), p 215–218

    Article  Google Scholar 

  14. C.-D. Hardie and S.-G. Roberts, Nanoindentation of Model Fe-Cr Alloys with Self-Ion Irradiation, J. Nucl. Mater., 2013, 433(1–3), p 174–179

    Article  Google Scholar 

  15. J.-C. Stinville, C. Tromas, P. Villechaise, and C. Templier, Anisotropy Changes in Hardness and Indentation Modulus Induced by Plasma Nitriding of 316L Polycrystalline Stainless Steel, Scr. Mater., 2011, 64(1), p 37–40

    Article  Google Scholar 

  16. S. Pathak, J. Michler, K. Wasmer, and S.-R. Kalidindi, Studying Grain Boundary Regions in Polycrystalline Materials Using Spherical Nano-indentation and Orientation Imaging Microscopy, J. Mater. Sci., 2012, 47(2), p 815–823

    Article  Google Scholar 

  17. C. Tromas, J.-C. Stinville, C. Templier, and P. Villechaise, Hardness and Elastic Modulus Gradients in Plasma-Nitrided 316L Polycrystalline Stainless Steel Investigated by Nanoindentation Tomography, Acta Mater., 2012, 60(5), p 1965–1973

    Article  Google Scholar 

  18. T. Takeuchi, J. Kameda, Y. Nagai, T. Toyama, Y. Nishiyama, and K. Onizawa, Study on Microstructural Changes in Thermally-Aged Stainless Steel Weld-Overlay Cladding of Nuclear Reactor Pressure Vessels by Atom Probe Tomography, J. Nucl. Mater., 2011, 415(2), p 198–204

    Article  Google Scholar 

  19. S.-L. Li, Y.-L. Wang, S.-X. Li, H.-L. Zhang, F. Xue, and X.-T. Wang, Microstructures and Mechanical Properties of Cast Austenite Stainless Steels After Long-term Thermal Aging at Low Temperature, Mater. Des., 2013, 50(17), p 886–892

    Article  Google Scholar 

  20. S.-C. Schwarm, S. Mburu, R.-P. Kolli, D.-E. Perea, and S. Ankem, Effects of Long-term Thermal Aging on Bulk and Local Mechanical Behavior of Ferritic–Austenitic Duplex Stainless Steels, Mater. Sci. Eng. A., 2018, 720(3), p 130–139

    Article  Google Scholar 

  21. T. Liu, W. Wang, W. Qiang, and G. Shu, Mechanical Properties and Eddy Current Testing of Thermally Aged Z3CN20.09M Cast Duplex Stainless Steel, J. Mater. Res., 2018, 501, p 1–7

    Google Scholar 

  22. W.-C. Oliver and G.-M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583

    Article  Google Scholar 

  23. J.-J. Vlassak and W.-D. Nix, Indentation Modulus of Elastically Anisotropic Half Spaces, Philos. Mag. A., 1993, 67(67), p 1045–1056

    Article  Google Scholar 

  24. J.-J. Vlassak and W.-D. Nix, Measuring the Elastic Properties of Anisotropic Materials by Means of Indentation Experiments, J. Mech. Phys. Solids, 1994, 42(8), p 1223–1245

    Article  Google Scholar 

  25. T. Czerwiec, H. He, G. Marcos, T. Thiriet, S. Weber, and H. Michel, Fundamental and Innovations in Plasma Assisted Diffusion of Nitrogen and Carbon in Austenitic Stainless Steels and Related Alloys, Plasma Process. Polym., 2009, 6(6–7), p 401–409

    Article  Google Scholar 

  26. K. Salmutter and F. Stangler, Elasticity or Plasticity of an Austenitic Chromium-Nickel Steel, Metallk., 1960, 51, p 544

    Google Scholar 

  27. R.-M. Cotterill and M. Doyama, Energy and Atomic Configuration of Complete and Dissociated Dislocations. I. Edge Dislocation in an fcc Metal, Phys. Rev., 1966, 145(2), p 465

    Article  Google Scholar 

  28. S.-G. Roberts, P.-D. Warren, and P.-B. Hirsch, Hardness Anisotropies: A New Approach, Mater. Sci. Eng. A., 1988, s105–106(11), p 19–28

    Article  Google Scholar 

  29. N. Jahanzeb, J.-H. Shin, J. Singh, Y.-U. Heo, and S.-H. Choi, Effect of Microstructure on the Hardness Heterogeneity of Dissimilar Metal Joints Between 316L Stainless Steel and SS400 Steel, Mater. Sci. Eng. A., 2017, 700(7), p 338–350

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Beijing Natural Science Foundation (2174080) and the National Natural Science Foundation of China (51601013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Wang, Y., Li, S. et al. Nano-Deformation Behavior of a Thermally Aged Duplex Stainless Steel Investigated by Nanoindentation, FIB and TEM. J. of Materi Eng and Perform 27, 4714–4721 (2018). https://doi.org/10.1007/s11665-018-3540-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3540-2

Keywords

Navigation