Skip to main content
Log in

Influence of Manufacturing Parameters on Microstructure Evolution and Corrosion Resistance of Powder Metallurgy Titanium

  • Powder Materials and Processing for Extreme Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The influence of manufacturing parameters (particle size fractions of powder, compaction pressure, sintering temperature) of titanium hydride TiH2 on the microstructural evolution and corrosion resistance of porous titanium in inorganic acids (20 wt.% HCl and 40 wt.% H2SO4 solutions) was investigated. It was shown that the porosity was fixed in the powder metallurgy titanium regardless of the manufacturing parameters. By decreasing particle size fractions of powder (from 100–200 μm to 0–100 μm) and increasing compaction pressure (from 150 MPa to 650 MPa) and sintering temperature (from 1050°C to 1350°C), the porosity of titanium was decreased from 5.1% to 1.1%. It was determined that a decrease of the porosity improves the anticorrosion properties of sintered titanium investigated by potentiodynamic polarization and static immersion tests. The highest corrosion resistance in the inorganic acids was obtained for porous titanium (1% porosity), which was pressed at 650 MPa and sintered in a vacuum at a temperature of 1350°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.B. Wang, H.X. Hu, C.B. Liu, and Y.G. Zheng, Electrochim. Acta 135, 526. https://doi.org/10.1016/j.electacta.2014.05.055 (2014).

    Article  Google Scholar 

  2. D.B. Wei, X.H. Chen, P.Z. Zhang, F. Ding, F.K. Li, and Z.J. Yao, Appl. Surf. Sci. 441, 448. https://doi.org/10.1016/j.apsusc.2018.02.058 (2018).

    Article  Google Scholar 

  3. M. Atapour, A.L. Pilchak, M. Shamanian, and M.H. Fathi, Mater. Des. 32, 1692. https://doi.org/10.1016/j.matdes.2010.09.009 (2011).

    Article  Google Scholar 

  4. J. Riskin, Corrosion behavior investigations of titanium and its alloys in the media of electrochemical plants, in Taking Into Account the Attack by Anodic Leakage Currents. ed. by J. Riskin (Elsevier, Amsterdam, 2008), p. 79. https://doi.org/10.1016/B978-0-444-53295-4.00006-5.

    Chapter  Google Scholar 

  5. X. Li, L. Wang, L. Fan, M. Zhong, L. Cheng, and Z. Cui, Corros. Sci. 192, 109812. https://doi.org/10.1016/j.corsci.2021.109812 (2021).

    Article  Google Scholar 

  6. Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, and Y.X. Qiao, Corros. Sci. 103, 50. https://doi.org/10.1016/j.corsci.2015.11.003 (2016).

    Article  Google Scholar 

  7. B. Su, B. Wang, L. Luo, L. Wang, Y. Su, F. Wang, Y. Xu, B. Han, H. Huang, J. Guo, and H. Fu, J. Mater. Sci. Technol. 74, 143. https://doi.org/10.1016/j.jmst.2020.08.066 (2021).

    Article  Google Scholar 

  8. C. Xia, Z. Zhang, Z. Feng, B. Pan, X. Zhang, M. Ma, and R. Liu, Corros. Sci. 112, 687. https://doi.org/10.1016/j.corsci.2016.09.012 (2016).

    Article  Google Scholar 

  9. L. Casanova, M. Gruarin, M. Pedeferrin, and M. Ormellese, Mater. Corros. https://doi.org/10.1002/maco.202112392 (2022).

    Article  Google Scholar 

  10. X. Zhong, S. Yu, J. Hu, L. Chen, Y. Shi, Z. Zhang, S. Gao, D. Zeng, and T. Shi, Int. J. Electrochem. Sci. 12, 2875. https://doi.org/10.20964/2017.04.26 (2017).

    Article  Google Scholar 

  11. E. Lingen and R.F. Sandenbergh, Corros. Sci. 43, 577. https://doi.org/10.1016/S0010-938X(00)00096-2 (2001).

    Article  Google Scholar 

  12. S. Lavrys, I. Pohrelyuk, H. Veselivska, A. Skrebtsov, J. Kononenko, and J. Marchenko, Mater. Corros. https://doi.org/10.1002/maco.202213105 (2022).

    Article  Google Scholar 

  13. S. Dong, G. Ma, P. Lei, T. Cheng, D. Savvakin, and O. Ivasishin, Adv. Powder Technol. 32, 2300. https://doi.org/10.1016/j.apt.2021.05.009 (2021).

    Article  Google Scholar 

  14. L. Bolzoni, E.M. Ruiz-Navas, and E. Gordo, Mater. Des. 110, 317. https://doi.org/10.1016/j.matdes.2016.08.010 (2016).

    Article  Google Scholar 

  15. Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free, Int. Mater. Rev. 63, 407. https://doi.org/10.1080/09506608.2017.1366003 (2018).

    Article  Google Scholar 

  16. F.H. Froes, S.J. Mashl, J.C. Hebeisen, V.S. Moxson, and V.A. Duz, JOM 56, 46. https://doi.org/10.1007/s11837-004-0252-x (2004).

    Article  Google Scholar 

  17. O. Ivasishin and V. Moxson, Low-cost titanium hydride powder metallurgy, in Titanium Powder Metallurgy. ed. by M. Qian, and F.H. Froes (Butterworth-Heinemann, Oxford, 2015), p. 117. https://doi.org/10.1016/B978-0-12-800054-0.00008-3.

    Chapter  Google Scholar 

  18. D.H. Savvakin, M.M. Humenyak, M.V. Matviichuk, and O.H. Molyar, Mater. Sci. 47, 651. https://doi.org/10.1007/s11003-012-9440-y (2012).

    Article  Google Scholar 

  19. V.V. Joshi, C. Lavender, V. Moxon, V. Duz, E. Nyberg, and K.S. Weil, J. Mater. Eng. Perform. 22, 995. https://doi.org/10.1007/s11665-012-0386-x (2013).

    Article  Google Scholar 

  20. C.R.F. Azevedo, D. Rodrigues, and F. Beneduce Neto, J. Alloys Compd. 353, 217. https://doi.org/10.1016/S0925-8388(02)01297-5 (2003).

    Article  Google Scholar 

  21. L. Bolzoni, E.M. Ruiz-Navas, and E. Gordo, Mater. Sci. Eng. A 687, 47. https://doi.org/10.1016/j.msea.2017.01.049 (2017).

    Article  Google Scholar 

  22. M.J. Shivaram, S.B. Arya, J. Nayak, and B.B. Panigrahi, Mater. Today 33, 5257. https://doi.org/10.1016/j.matpr.2020.02.952 (2020).

    Article  Google Scholar 

  23. I.M. Pohreluyk, S.M. Lavrys, and O.H. Lukyanenko, J. Frict. Wear 42, 461. https://doi.org/10.3103/S1068366621060076 (2021).

    Article  Google Scholar 

  24. S. Dong, T. Cheng, X. Wang, D. Savvakin, and O. Ivasishin, JOM. https://doi.org/10.1007/s11837-022-05386-x (2022).

    Article  Google Scholar 

  25. J.D. Paramore, Z.Z. Fang, M. Dunstan, P. Sun, and B.G. Butler, Sci. Rep. 7, 41444. https://doi.org/10.1038/srep41444 (2017).

    Article  Google Scholar 

  26. C.-C. Shen and C.-M. Wang, J. Alloys Compd. 601, 274. https://doi.org/10.1016/j.jallcom.2014.02.171 (2014).

    Article  Google Scholar 

  27. D. Prando, A. Brenna, M.V. Diamanti, S. Beretta, F. Bolzoni, M. Ormellese, and M.P. Pedeferri, J. Appl. Biomater. Funct. Mater. 15, e291. https://doi.org/10.5301/jabfm.5000387 (2017).

    Article  Google Scholar 

  28. H. Satoh, K. Shimogori, and F. Kamikubo, Platin. Met. Rev. 31, 115. (1987).

    Google Scholar 

  29. J. Fojt, L. Joska, and J. Málek, Corros. Sci. 71, 78. https://doi.org/10.1016/j.corsci.2013.03.007 (2013).

    Article  Google Scholar 

  30. E. Yılmaz, A. Gökçe, F. Findik, H.O. Gulsoy, and O. İyibilgin, J. Mech. Behav. Biomed. Mater. 87, 59. https://doi.org/10.1016/j.jmbbm.2018.07.018 (2018).

    Article  Google Scholar 

  31. G. Wang, Q. Liu, H. Rao, H. Liu, and C. Qiu, J. Alloys Compd. 831, 15815. https://doi.org/10.1016/j.jallcom.2020.154815 (2020).

    Article  Google Scholar 

  32. A. Simchi and H. Danninger, Powder Metall. 47, 73. https://doi.org/10.1179/003258904225015545 (2004).

    Article  Google Scholar 

  33. G.T. Burstein, C. Liu, and R.M. Souto, Biomaterials 26, 245. https://doi.org/10.1016/j.biomaterials.2004.02.023 (2005).

    Article  Google Scholar 

  34. I.M. Pohrelyuk, O.V. Ovchynnykov, A.A. Skrebtsov, Kh.S. Shvachko, R.V. Proskurnyak, and S.M. Lavrys, Mater. Sci. 52, 700. https://doi.org/10.1007/s11003-017-0012-z (2017).

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhii Lavrys.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pohrelyuk, I., Lavrys, S., Shliakhetka, K. et al. Influence of Manufacturing Parameters on Microstructure Evolution and Corrosion Resistance of Powder Metallurgy Titanium. JOM 75, 816–824 (2023). https://doi.org/10.1007/s11837-022-05627-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05627-z

Navigation