Skip to main content
Log in

The Refining Mechanism of ZrO2-Doped Molybdenum Powder During the Reduction Process

  • Advances in Process Metallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this work, molybdenum powder was firstly prepared by using the hydrothermal method, and then mixed, dried, and calcined to obtain mixed powder. The processing route involves a molecular-level liquid-liquid doping technique, which causes the uniform distribution of cubic ZrO2 particles in the grains. Scanning electron microscopy and transmission electron microscopy were used to observe and analyze the reductive raw materials of molybdenum powder and products during various stages. The refinement mechanism of the doped molybdenum powder during the reduction process was analyzed by agglomeration theory. It is believed that nano-sized ZrO2 particles adsorbed on the surface of micro-sized MoO3 and MoO2 powders during the reduction process hinder the growth and fusion of the powder, and thus refine the reduction product, Mo powder. Finally, a mechanism by which zirconia particles inhibit powder growth during molybdenum powder reduction is proposed. This work provides a good research foundation and potential applications for alloy materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. L. Xu, S. C. Tao, L. Z. Bao, J. M. Luo and Y. F. Zheng, Materials Science & Engineering C-Materials for Biological Applications, 97 (2018).

  2. C. Cui, Z. Xiangwei, L. Shulong, Li. Qiang, Z. Min, Z. Guangping, and W. Shizhong, C. Cui, Z. Xiangwei, L. Shulong, Li. Qiang, Z. Min, Z. Guangping, and W. Shizhong, J. Alloys Compd. 768, 81–87. (2018).

    Article  Google Scholar 

  3. G. An, J. Sun, R.Z. Liu, J. Li, and Y.J. Sun, G. An, J. Sun, R.Z. Liu, J. Li, and Y.J. Sun, Rare Met. 34, 276–281. (2015).

    Article  Google Scholar 

  4. M.F. Mada, M.F. Mada, J. Nucl. Mater. 233–237, 1397–1402. (1996).

    Article  Google Scholar 

  5. Marie Franqoise Maday, Marie Franqoise Maday, Theodoros Dikonimos-Makris. J. Nucl. Mater. 246, 70–76. (1997).

    Article  Google Scholar 

  6. G.R. Smolik, D.A. Petti, and S.T. Schuetz, G.R. Smolik, D.A. Petti, and S.T. Schuetz, J. Nucl. Mater. 283–287, 1458–1462. (2000).

    Article  Google Scholar 

  7. I.G. Sharma, S.P. Chakraborty, and A.K. Suri, I.G. Sharma, S.P. Chakraborty, and A.K. Suri, J. Alloys Compd. 393, 122–128. (2005).

    Article  Google Scholar 

  8. B.V. Cockeram, B.V. Cockeram, Mater. Sci. Eng. A 418, 120–136. (2006).

    Article  Google Scholar 

  9. B.V. Cockeram, R.W. Smith, T.S. Byun, and L.L. Snead, B.V. Cockeram, R.W. Smith, T.S. Byun, and L.L. Snead, J. Nucl. Mater. 393, 12–21. (2009).

    Article  Google Scholar 

  10. A. Ahmad, S. Mitra, S.K. Srivastava, and A.K. Das, A. Ahmad, S. Mitra, S.K. Srivastava, and A.K. Das, J. Magn. Magn. Mater. 474, 599–604. (2019).

    Article  Google Scholar 

  11. S. Yoon, T. Noh, W. Kim, J. Choi, and H. Lee, S. Yoon, T. Noh, W. Kim, J. Choi, and H. Lee, Ceram. Int. 39, 9247–9251. (2013).

    Article  Google Scholar 

  12. S. Gu, M. Qin, H. Zhang, and J. Ma, S. Gu, M. Qin, H. Zhang, and J. Ma, Materials (Basel) 11, 12. (2018).

    Google Scholar 

  13. C. Cui, G. Yimin, W. Shizhong, Z. Guoshang, Z. Yucheng, P. Kunming, Z. Xiangwei, and G. Songliang, C. Cui, G. Yimin, W. Shizhong, Z. Guoshang, Z. Yucheng, P. Kunming, Z. Xiangwei, and G. Songliang, High Temp. Mater. Process. (Lond.) 36, 167–173. (2017).

    Article  Google Scholar 

  14. C. Cui, G. Yimin, W. Shizhong, and Z. Guoshang, C. Cui, G. Yimin, W. Shizhong, and Z. Guoshang, High Temp. Mater. Process. (Lond.) 36, 163–166. (2017).

    Article  Google Scholar 

  15. C. Cui, G. Yimin, W. Shizhong, and Z. Guoshang, C. Cui, G. Yimin, W. Shizhong, and Z. Guoshang, Appl. Phys. A 122, 214. (2016).

    Article  Google Scholar 

  16. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nat. Mater. 12, 344–350. (2013).

    Article  Google Scholar 

  17. M. Xiao, F. Li, H. Xie, and Y. Wang, M. Xiao, F. Li, H. Xie, and Y. Wang, Mater. Des. 34, 112–119. (2012).

    Article  Google Scholar 

  18. W. Lin, S. Jun, L. Gang, S. Yuanjun, and Z. Guojun, W. Lin, S. Jun, L. Gang, S. Yuanjun, and Z. Guojun, Int. J. Refract. Metal Hard Mater. 29, 522–527. (2011).

    Article  Google Scholar 

  19. B. Sun, P. Han, W. Zhao, Y. Liu, and P. Chen, B. Sun, P. Han, W. Zhao, Y. Liu, and P. Chen, J. Phys. Chem. C 118, 18814–18819. (2014).

    Article  Google Scholar 

  20. B. Sun, H. Li, L. Wei, and P. Chen, B. Sun, H. Li, L. Wei, and P. Chen, Cryst. Eng. Commun. 16, 9891–9895. (2014).

    Article  Google Scholar 

  21. G. Zhou, Z. Ren, L. Wang, B. Sun, S. Duan, and Q. Song, G. Zhou, Z. Ren, L. Wang, B. Sun, S. Duan, and Q. Song, Mater. Horizons 6, 1877–1882. (2019).

    Article  Google Scholar 

  22. G. Zhou, Z. Ren, L. Wang, J. Wu, B. Sun, A. Zhou, G. Zhang, S. Zheng, S. Duan, and Q. Song, G. Zhou, Z. Ren, L. Wang, J. Wu, B. Sun, A. Zhou, G. Zhang, S. Zheng, S. Duan, and Q. Song, Nano Energy 63, 103793. (2019).

    Article  Google Scholar 

  23. G. Zhou, Z. Ren, B. Sun, J. Wu, Z. Zou, S. Zheng, L. Wang, S. Duan, and Q. Song, G. Zhou, Z. Ren, B. Sun, J. Wu, Z. Zou, S. Zheng, L. Wang, S. Duan, and Q. Song, Nano Energy 68, 104386. (2020).

    Article  Google Scholar 

  24. L.E. Iorio, B.P. Bewlay, and M. Larsen, L.E. Iorio, B.P. Bewlay, and M. Larsen, Int. J. Refract. Metal Hard Mater. 24, 306–310. (2006).

    Article  Google Scholar 

  25. T. Mrotzek, A. Hoffmann, and U. Martin, T. Mrotzek, A. Hoffmann, and U. Martin, Int. J. Refract. Metal Hard Mater. 24, 298–305. (2006).

    Article  Google Scholar 

  26. J. Fan, M. Lu, H. Cheng, J. Tian, and B. Huang, J. Fan, M. Lu, H. Cheng, J. Tian, and B. Huang, Int. J. Refract. Metal Hard Mater. 27, 78–82. (2009).

    Article  Google Scholar 

  27. A. Salama, and P. Hesemann, A. Salama, and P. Hesemann, J. Polym. Environ. 26, 1986–1997. (2018).

    Article  Google Scholar 

  28. X. Yang, H. Tan, N. Lin, Z. Li, and Y. He, X. Yang, H. Tan, N. Lin, Z. Li, and Y. He, Int. J. Refract. Metal Hard Mater. 51, 301–308. (2015).

    Article  Google Scholar 

  29. G. Zhang, G. Liu, Y. Sun, F. Jiang, L. Wang, R. Wang, and J. Sun, G. Zhang, G. Liu, Y. Sun, F. Jiang, L. Wang, R. Wang, and J. Sun, Int. J. Refract. Metals Hard Mater. 27, 173–176. (2009).

    Article  Google Scholar 

  30. Y. Zhou, Y. Gao, S. Wei, and Y. Hu, Y. Zhou, Y. Gao, S. Wei, and Y. Hu, Microsc. Microanal. 22, 122–130. (2016).

    Article  Google Scholar 

  31. G.D. Sun, G.H. Zhang, and K.C. Chou, G.D. Sun, G.H. Zhang, and K.C. Chou, Int. J. Refract. Metals Hard Mater. 84, 105039. (2019).

    Article  Google Scholar 

  32. S. Majumdar, S. Raveendra, I. Samajdar, P. Bhargava, and I.G. Sharma, S. Majumdar, S. Raveendra, I. Samajdar, P. Bhargava, and I.G. Sharma, Acta Mater. 57, 4158–4168. (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Anhui Natural Science Foundation (1908085QF293, 1908085QA36), Natural Science Foundation of Anhui Higher Education Institutions of China (KJ2019B14, KJ2018A0394), the Key Foundation of Educational Commission of Anhui Province (KJ2016SD53), and National Natural Science Foundation of China (No.1704152, No. U1804124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaopeng Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with this work. We declare that we do not have any commercial or associative interests that represent a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 768 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Zhu, X. The Refining Mechanism of ZrO2-Doped Molybdenum Powder During the Reduction Process. JOM 73, 1646–1651 (2021). https://doi.org/10.1007/s11837-021-04595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04595-0

Navigation