Skip to main content
Log in

Grain Refining Efficiency and the Role of Alloying Elements in Determining the Nucleation Potency of LaB6 in Aluminum Alloys

  • Aluminum and Magnesium: Casting Technology and Solidification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work discloses the refinement mechanism of LaB6 in three binary aluminum alloys via grain refinement experiments, model calculation, and cooling curve analysis. The refining efficacy of LaB6 in aluminum was influenced by an interfacial relationship which can be controlled by alloying with different solute elements. Al atoms attach directly onto the surface of the LaB6 substrate during solidification. Because the lattice parameter of α-Al increased after alloying with larger metal atoms, the lattice mismatch between LaB6 and Al matrix decreased. This investigation reveals that the nucleating behavior of LaB6 can be influenced by adding solute Si, Mg, and Cu, and thereby offers a pathway for controlling the content of aluminum alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.N. Chen, H.J. Kang, G.H. Fan, J.H. Li, Y.P. Lu, J.C. Jie, Y.B. Zhang, T.J. Li, X.G. Jian, and T.M. Wang, Acta Mater. 120, 168 (2016).

    Article  Google Scholar 

  2. T.E. Quested and A.L. Greer, Acta Mater. 53, 4643 (2005).

    Article  Google Scholar 

  3. A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schneider, P. Schumacher, J.A. Spittle, and A. Tronche, Adv. Eng. Mater. 5, 81 (2003).

    Article  Google Scholar 

  4. D.H. StJohn and M.A. Easton, Alum. Cast House Technol., 151 (2001).

  5. A. Cibula, J. Inst. Met. 76, 321 (1949).

    Google Scholar 

  6. F.A. Crossley and L.F. Mondolfo, Trans. Am. Inst. Min. Metall. Pet. Eng. 191, 1143 (1951).

    Google Scholar 

  7. M. Johnsson, L. Backerud, and G.K. Sigworth, Metall. Mater. Trans. A 24, 481 (1993).

    Article  Google Scholar 

  8. I. Maxwell and A. Hellawell, Acta Metall. 23, 895 (1975).

    Article  Google Scholar 

  9. M.A. Easton, M. Qian, A. Prasad, and D.H. StJohn, Curr. Opin. Solid State Mater. Sci. 20, 13 (2016).

    Article  Google Scholar 

  10. D.H. StJohn, M. Qian, M.A. Easton, and P. Cao, Acta Mater. 59, 4907 (2011).

    Article  Google Scholar 

  11. M.A. Easton and D.H. StJohn, Light Met., 927 (2001).

  12. M.A. Easton and D.H. StJohn, Acta Mater. 49, 1867 (2001).

    Article  Google Scholar 

  13. M. Easton and D. StJohn, Metall. Mater. Trans. A 30, 1613 (1999).

    Article  Google Scholar 

  14. D.H. Stjohn, M.A. Easton, M. Qian, and J.A. Taylor, Metall. Mater. Trans. A 44A, 2935 (2013).

    Article  Google Scholar 

  15. F. Wang, Z. Liu, D. Qiu, J.A. Taylor, M.A. Easton, and M.X. Zhanga, Acta Mater. 61, 360 (2013).

    Article  Google Scholar 

  16. M.A. Easton, A. Prasad, and D.H. StJohn, Mater. Sci. Forum 794, 161 (2014).

    Article  Google Scholar 

  17. L. Coudurier, N. Eustathopoulos, P. Desre, and A. Passerone, Acta Metall. 26, 465 (1978).

    Article  Google Scholar 

  18. Paliwal and I.-H. Jung, Metall. Mater. Trans. A 44, 1636 (2013).

    Article  Google Scholar 

  19. G.K. Sigworth, Metall. Mater. Trans. A 15, 277 (1984).

    Article  Google Scholar 

  20. P.T. Li, S.D. Liu, L.L. Zhang, and X.F. Liu, Mater. Des. 47, 522 (2013).

    Article  Google Scholar 

  21. P.T. Li, W.J. Tian, D. Wang, and X.F. Liu, J. Rare Earths 30, 1172 (2012).

    Article  Google Scholar 

  22. L. Jing, Y. Pan, T. Lu, and C. Li, J. Mater. Eng. Perform. 27, 1 (2018).

    Article  Google Scholar 

  23. P.T. Li, C. Li, J.F. Nie, J. Ouyang, and X.F. Liu, CrystEngComm 15, 411 (2013).

    Article  Google Scholar 

  24. Y. Chen, Y. Pan, T. Lu, S.W. Tao, and J.L. Wu, Mater. Des. 64, 423 (2014).

    Article  Google Scholar 

  25. T. Lu, Y. Pan, J.L. Wu, S.W. Tao, and Y. Chen, Int. J. Miner. Metall. Mat. 22, 405 (2015).

    Article  Google Scholar 

  26. A.M. Mitrasinovic and F.C.R. Hernandez, Mater. Sci. Eng., A 540, 63 (2012).

    Article  Google Scholar 

  27. M. Easton and D. StJohn, Metall. Mater. Trans. A 36A, 1911 (2005).

    Article  Google Scholar 

  28. M. Nowak, L. Bolzoni, and N.H. Babu, Mater. Des. 66, 366 (2015).

    Article  Google Scholar 

  29. K. Kim, Surf. Interface Anal. 47, 429 (2015).

    Article  Google Scholar 

  30. L. Bolzoni, M. Nowak, and N.H. Babu, J. Alloys Compd. 623, 79 (2015).

    Article  Google Scholar 

  31. M.X. Zhang, P.M. Kelly, M.A. Easton, and J.A. Taylor, Acta Mater. 53, 1427 (2005).

    Article  Google Scholar 

  32. S.Q. Liu, X. Wang, C.X. Cui, L.C. Zhao, S.J. Liu, and C. Chen, Mater. Des. 65, 432 (2015).

    Article  Google Scholar 

  33. J. Wang, Y. Du, S.L. Shang, Z.K. Liu, and Y.W. Li, J. Min. Metall. Sect. B-Metall. 50, 37 (2014).

    Article  Google Scholar 

  34. A. Tonejc and A. Bonefacic, Scr. Metall. 3, 145 (1969).

    Article  Google Scholar 

  35. A. Tonejc and A. Bonefacic, J. Appl. Phys. 40, 419 (1969).

    Article  Google Scholar 

  36. P. Schumacher, A.L. Greer, J. Worth, P.V. Evans, M.A. Kearns, P. Fisher, and A.H. Green, Mater. Sci. Technol. 14, 394 (1998).

    Article  Google Scholar 

  37. Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto, Acta Mater. 84, 292 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This research is financially supported by Jiangsu key laboratory for advanced metallic materials (BM2007204) and the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (ASMA201501). The authors thank Dr. K. Zhang and C.W Jin for their assistance with TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, L., Lu, T. & Pan, Y. Grain Refining Efficiency and the Role of Alloying Elements in Determining the Nucleation Potency of LaB6 in Aluminum Alloys. JOM 72, 3725–3732 (2020). https://doi.org/10.1007/s11837-019-03970-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03970-2

Navigation